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Abstract

Image restoration is a classic but challenging problem in the computer vision field.

In recent, deep learning-based methods have achieved superior performance by the huge

capacity of neural networks and the large volume of the dataset. However, are these heavy

models applicable in real-world applications? If not suitable, what are the directions the

deep methods would take? To answer these questions, the thesis explore three aspects:

model efficiency, data efficiency, and multi-modal distortion.

In model efficiency, we define the “efficiency” as both network size and the computation

cost to run the network. Many studies have focused on the former alone, but in reality, the

latter one is the key ingredient because of the runtime latency and the battery consumption

issues. To tackle this, we devise the network structure and rethinking the training strategy

to maintain the performance as much as possible while effectively advance both efficiency

aspects: network size, and the number of the operations.

For data efficiency, we investigate the data augmentation and the unsupervised train-

ing in the image restoration task. The data augmentation method is fruitful when the

training dataset is small or the network capacity is large without any computation cost in

runtime. The unsupervised training assumes the scenario where only low-quality images

exist, much challenging compared to the supervised regime. These two concepts have

been well analyzed in the high-level vision field, but not many in the image restoration

community. With both training strategies, we achieve the huge performance leap to the

recent image restoration methods in many real-world scenarios and datasets.

Last but not least, we tackle the multi-modal distortion, in particular, when multiple

distortions corrupt the different regions of image. The single distortion restoration network

or the distortion recognition-restoration pipeline system are not satisfactory in terms of

both the performance and the efficiency when serving a model. In contrast, the proposed

multi-expert network based on the multi-task learning and the analysis of the multi-modal

distribution performs superior restoration accuracy with reasonable computation cost and

good efficiency in model serving perspective.

Keywords: Low-level vision, Image restoration, Deep neural network, Model efficiency,

Data efficiency, Multi-modal distortion
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Chapter 1

Introduction

The image restoration task aims to reconstruct the high-quality (HQ) image x from the

low-quality (LQ) image y. In general, degraded observation y is generated as y = H(x) +

v, where H is a degradation function and v is noise. With this formula, we can define many

image restoration tasks: image denoising if H is an identity function and v is Gaussian

noise of standard deviation σ, image deblurring when H is a function of a blur kernel,

and image super-resolution when H is a composition of a blur kernel and subsampling

operation. Since the LQ image y and HQ image x are one-to-many mapping, solving

this formula is an ill-posed problem, thus developing the effective restoration algorithm

is very challenging. Despite the difficulty, this task is a long-standing problem in the

computer vision community and has deeply been investigated due to its highly practical

value in various potential applications. For example, we can apply the restoration method

to surveillance systems to reduce the streaming latency or we can use it to enhance the

low-quality and old media into clean ones. Besides, many modern smartphones adopt the

restoration algorithm to the camera module for better user experience.

Recently, the use of a deep learning-based approach shows outstanding improvements

in image restoration performance. The major factors of the success of deep methods

are the large dataset and the huge capacity of the convolutional neural networks. From

the pioneer deep restoration model, SRCNN [1], which has three layers, the capacity of

the networks rapidly has grown as over time. For example, one of the state-of-the-art
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methods, RCAN [2], is composed of four hundred convolutional layers. Thanks to the

high capacity of the model, we have witnessed the powerful performance when the input

dataset is adequately enough to train such heavy network. However, although the modern

deep-based approaches have shown outstanding performance, there are strong drawbacks

to this paradigm— the necessity of a massive dataset and the computation resources.

Beyond improving the method on the performance only, now it is the time to rethink the

deep restoration models as to how to apply in real-world applications. Is high performance

is the only optimal solution in the real world? If this is not true, what are the major issues?

Here, we present three topics below and we investigate these throughout the thesis.

Large computation and memory. Can real-world devices manage the deep models?

Modern deep restoration networks use more than hundreds of layers to increase the ca-

pacity, but paradoxically, these trends decrease the usability of such models. Not all

the applications are computed in the state-of-the-art GPU, rather most of them are run-

ning in CPU or even small-computation edge devices. In this circumstance, latency and

battery consumption are the major factors where the modern deep methods cannot be

fulfilled easily. To achieve the efficiency criteria, it is necessary to view the “efficiency” as

computation cost, while most of the studies have overlooked this.

Limits of the data-hungry training. Most of the deep restoration networks are based

on the supervised training scheme where they require massive HQ and LQ pairs. Unfortu-

nately, a large-scale and high-quality dataset (HQ and LQ pairs) is not always accessible,

especially in real-world scenarios. Even worse, it is impossible to collect HQ images for

some cases such as the medical imagining field. In the data limitation environment, how

we adequately train the deep networks? In the high-level vision (e.g., classification) they

have applied the data augmentation [3, 4] when the volume of the training dataset is small.

For the case where no labels are given, some studies have used the unsupervised or self-

supervised to make the model learns the data representation and fine-tune this pre-trained

network with an additional small dataset [5, 6, 7]. However, none of both approaches have

been deeply investigated in low-level vision such as the image restoration field.

Single distortion is all we need? In real-world applications, an image could be cor-
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rupted with multiple distortions while most of the studies have focused on restoring a

single distortion only. However, it is well known that the deep networks are fragile to the

disparity distribution between the training and test dataset. To detour this, recent studies

have proposed mixed distortion [8], but the multi-modal nature of image distortion should

be profoundly analyzed from many points of view.

1.1 Thesis Outline

We provide an outline of the chapters according to the three parts of the thesis.

Part I: Model Perspective Efficiency. We first study the efficiency of the deep net-

works for the image restoration task. We define the model efficiency as not only the

model parameters but also the number of the operations, which is the key ingredient of

the inference latency and memory consumption when serving a deep method.

In this part, we tackle the efficiency on two aspects, the number of the parameters and

the operations. The simplest strategy is naively reducing the number of channels or layers,

but this is not an appropriate solution since the performance degradation is rapid compared

to the improved efficiency. In Chapter 2, we devise the network structure mechanism that

maintains the performance as much as possible while effectively advance the efficiency.

With a novel architectural design, we achieve the best efficiency-performance compared

to the state-of-the-art methods (at time of publication). Besides, we control the efficiency

with the techniques from the high-level vision models and provide some guidance to squeeze

the efficiency of the network. With the study in Chapter 2, we extend the model to catch

both the performance and the efficiency of the extreme image restoration task (Chapter

3). In extreme situations, many deep methods fall into training instability because of the

lack of input information and the sudden increase of the feature resolution. To alleviate

these issues, we combine the core concept of the lightweight and the heavy networks so to

make a golden balance point between the restoration accuracy and the model efficiency.

Part II: Data Perspective Efficiency. As mentioned before, data efficiency is an-

other key feature in the application perspective, yet still is the limitation of many deep

3



image restoration methods. To alleviate this issue, we first deeply investigate the data

augmentation strategy in the image restoration tasks. Data augmentation is the widely

used training technique in high-level vision tasks while not many studies have a focus on

this in the low-level vision (including the image restoration). In Chapter 4, we conduct a

comprehensive analysis of the data augmentation on the diverse image restoration tasks

and propose a new augmentation method specifically designed for the image restoration

purpose. With this strategy, the restoration accuracy is increased without an extra cost in

inference, and furthermore, the data augmentation enhances the generalization ability of

the model. One interesting observation is that the effects of the augmentation are enlarged

when the datasets are closer to the real environment. This is because images from the

realistic dataset are corrupted with different but subtle distortion kernels or noise so that

the generalization capability is particularly beneficial.

Then, we study the unsupervised image restoration task in Chapter 5. This scenario

assumes that only low-quality images can be acquired, and this is a very common in the

medical imagining field. Previously, ZSSR [9] has tackled this problem by seeing given

single input image only with a runtime optimization approach. However, the performance

of ZSSR is inferior to the supervised models and the latency is not manageable (even in

modern GPU) due to the runtime training. Instead, we relax the assumption of ZSSR and

reformulate the unsupervised image restoration problem to the supervised regime. With

this approach, the performance gap between the supervised and the proposed is drastically

reduced with the identical runtime of the supervised-based networks.

Part III: Toward Multi-modal Distortion. In Part III, the thesis focuses on studying

the multi-modality in distortion. Here, we narrow the definition of the multi-modality as

the scenario where multiple distortions are represented in various locations (e.g., Gaussian

noise on the left while blur on the right of the image). Unlike the single distortion, directly

applying a restoration method does not guarantee satisfactory results. We hypothesize

that this is similar to the performance trends in realistic distortion— the diversity implied

in multi-modality requires the ability on generalization. In addition, because distortions

are applied in different locations, the restoration models should know both “what” and

“where” the distortions are in this region. To analyze these in-depth, we first begin this
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part with a deep investigation of the multi-modality (Chapter 6), especially on whether

the deep model can recognize the type or location of the distortion very accurately.

In Chapter 7, we study the effective and efficient restoration model on this scenario.

The very naive approach is the pipeline system that detects the corruptions and recon-

structs them with distortion-specific restoration networks. This framework, however, is

composed of the distortion recognizer and multiple restoration modules. When serving

this framework in a real-world application, this is particularly inefficient since we manage

all the sub-modules simultaneously, and even this framework requires extra latency on

recognizing the distortions. Besides, each restoration module is trained independently so

that the shared representation of both the image and distortion are learned in their way,

inefficient in training perspective. On the other hand, a single-branch network design

(as in the single distortion restoration) is ineffective since the network handles multiple

distortions. If we increase the network capacity, then the efficiency significantly deterio-

rates. Instead of the two approaches, we build the network as a mixture-of-experts concept

following the multi-task learning literature [10] with an unsupervised distortion recogni-

tion sub-network. This framework has several advantages: 1) Effective since each expert

learns both shared and distortion-specific representation. 2) Efficient in model serving

perspective since neither additional distortion recognizer nor distortion-specific networks

are required. 3) Interpretable due to the attention-based expert fusing mechanism.
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Chapter 2

Lightweight Image Restoration Model

Recent progress in the deep learning-based models has improved the image restoration

performance significantly. However, despite their powerful performance, many methods

are difficult to apply to real-world applications because of the heavy computational require-

ments. To facilitate the use of a deep model under such demands, we focus on keeping the

network efficient while maintaining its performance. In detail, we design an architecture

that implements a cascading mechanism on a residual network to boost the performance

with limited resources via multi-level feature fusion. In addition, our proposed model

adopts group convolution and recursive schemes to achieve extreme efficiency. We fur-

ther improve the perceptual quality of the output by employing the adversarial learning

paradigm and a multi-scale discriminator approach. To benchmark the superiority of our

method, we mainly evaluate the networks to the super-resolution task. We conduct ex-

tensive internal experiments and compare the model to the recent methods in the various

datasets. Our results show that proposed models outperform the other methods with

similar complexity, for both traditional pixel-based and perception-based tasks.

2.1 Overview

Image super-resolution (SR) is a longstanding computer vision task that can be widely

used in many applications. This task focuses on recovering a high-resolution (HR) image
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from low-resolution (LR) images. In particular, single-image super-resolution (SISR) per-

forms SR using a single LR image. Since the SISR problem is a one-to-many mapping,

constructing an effective SISR algorithm is challenging. Despite the difficulties, SISR has

been actively studied since it can be applied to a variety of scenarios (i.e. enhancing

human face [11] or biometrics [12]). Recently, deep learning-based methods have shown

prominent performance on SR task [13]. The major trend of deep models is not only

stacking layers to their networks [14] but also designing and assembling internal blocks

and network topologies [15] to achieve more accurate results.

Although deep learning-based networks significantly increase the quality of the SR

outputs, applying such models to real-world scenarios is another challenge. Many cases

require not only quality but also efficiencies such as streaming services or mobile appli-

cations. However, the recent state-of-the-art methods [16, 17, 2] use very deep networks,

which can be computationally heavy. From this perspective, it is obvious that designing

a lightweight SR network is very crucial.

Several works [18, 19, 20] make efforts to design a lightweight SR model by reducing the

number of parameters. One of the most simple and effective approaches is to construct

the model in a recursive manner [18]. However, even though such studies show good SR

performance using a small number of parameters, they have some downsides: These works

increase the depth or width of the network to compensate for the performance loss caused

by the use of the recursive scheme, making the inference very slow. Moreover, their early-

upsample design, which upsamples the input image before inputting it to the network,

results in high computational cost.

However, as mentioned earlier, the number of operations is also an important factor

to consider in real-world demands. For the SR systems that operate on mobile devices,

the execution speed also plays an important role from a user-experience perspective. Es-

pecially the battery capacity, which is heavily dependent on the amount of computation

performed, becomes a major problem. In this respect, reducing the number of operations

is a challenging and necessary step that has largely been ignored until now. A relevant

practical scenario can be found in video streaming services. The demand for streaming
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media has skyrocketed, and hence large storage for massive multimedia data is required.

It is therefore imperative to compress data using lossy compression techniques before stor-

ing. Then, an SR technique can be applied to restore the data to the original resolution.

However, because latency is the most critical factor in such services, the decompression

process has to be performed in near-real time. To do so, it is essential to make the SR

methods lightweight in terms of the number of operations to satisfy timing constraints.

To handle these requirements and improve the recent models, we propose a Cascading

residual network (CARN) and its variant CARN-Mobile (CARN-M). We first build our

CARN model to increase the performance and extend it to CARN-M to optimize it for

speed and the number of operations. Following the FSRCNN [21], the CARN family

takes the LR images and computes the HR counterparts as the output of the network.

The middle parts of our models are designed based on the ResNet [22]. The ResNet

architecture has been widely used in deep learning-based SR methods [23, 14] because of

the ease of training and superior performance. In addition to the ResNet architecture,

CARN uses a cascading mechanism at both the local and the global level to incorporate

the features from multiple layers. This has the effect of reflecting various levels of input

representations to receive more information. In addition, CARN-M allows a user to tune

the trade-off between the performance and the heaviness of the model. It does so through

the efficient residual block (residual-E) and recursive network architecture.

Besides, we further improve the CARN and CARN-M to being photo-realistic SR meth-

ods. Even though SR performance continues to be enhanced, there still exists a gap

between the quantitative scores and human-perceived judgment. Various methods includ-

ing the CARN family adopt pixel-based (or distortion-based) error functions (e.g., mean

squared error or L1 loss), to train the network. Minimizing such objectives leads to a

high peak signal-to-noise ratio (PSNR) score, which is a commonly used quality measure

in the SR community. However, the ability to restore the high-frequency details in such

cases is limited, since pixel-based error functions only capture the difference between two

images pixel-wise. Moreover, they often result in blurry output images, thus usually dis-

agreeing with the subjective evaluation scores given by human judges. To address such

shortcomings, several deep learning-based methods perceptually optimize their network to
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improve human-visual quality. Starting with SRGAN [24], most of the models that aim for

good perceptual quality employ the generative adversarial network (GAN) [25] paradigm

and perceptual loss [26]. Enhanced SRGAN (ESRGAN) [16] achieves the best perceptual

quality by improving both the generator and the discriminator simultaneously.

To overcome such an issue, we adopt adversarial training to build photo-realistic CARN

and CARN-M (PCARN, PCARN-M). More specifically, we set the CARN(-M) as a gener-

ator and attach an additional discriminator network that distinguishes whether the input

images are from the HR or the SR set (Figure 2.1). Additionally, we also enhance the dis-

criminator by using a multi-scale discriminator strategy instead of using a single discrim-

inator to make the model produce images with high perceptual quality. The multi-scale

discriminator consists of multiple networks, where each network is in charge of handling

a certain scale. It improves the ability of the generator and the discriminator to preserve

the details by taking into account both the coarse and fine textures.

2.2 Background

Deep super-resolution. The performance of the SR has been greatly improved with the

powerful capabilities of the deep learning-based methods. As a pioneer work, SRCNN [27]

surpasses the traditional approaches by firstly using a deep learning-based model. How-

ever, SRCNN requires large computation resources compared to its depth, since the model

takes upsampled images as an input. On the other hand, ESPCN [28] takes an LR image

as an input, after which it upsamples the image at the end of the network. This strategy

reduces the computation substantially compared to the early-upsample scheme.

A shortcoming of the aforementioned methods is that they only use a few convolutional

layers because of training instability. To tackle this issue, VDSR [29] introduces global

residual learning and shows significant improvement over the previous methods by stacking

more layers. The global residual learning maps the LR image x to its residual image

r. Then, it produces the SR image ỹ by adding the residual back to the original, i.e.,

ỹ = x + r. The ESCN [30] uses an ensemble technique to overcome the training instability
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and to increase the representation power. All the methods mentioned directly super-resolve

to the desired spatial resolution, resulting in unsatisfying quality when the input is severely

downsampled. To tackle this issue, recent studies use a progressive upsampling [31], which

upsamples the intermediary features periodically to restore the image gradually.

One possible disadvantage of applying a deep SR method is the efficiency of the net-

work. That is, there is a problematic increase in the size of the model. To address this

concern, most previous studies [18, 19, 20] aim to build a lightweight model in terms of

the number of parameters. DRCN [18] and MemNet [19] use a recursive layer to boost the

SR quality without additional parameters. Similarly, MSLapSRN [20] ties the parameters

of each scale-wise block and takes advantage of both the recursive scheme and progressive

approach, resulting in superior SR performance in terms of both SR quality and efficiency.

However, many of the parameter-efficient methods use very deep networks to compensate

for degraded SR performance caused by the use of the recursive scheme and thus require

heavy computing resources. On the other hand, we aim to build a model that is lightweight

in both size and computational aspects.

Photo-realistic super-resolution. Generally, deep learning-based SR networks are

trained using pixel-based (or distortion-based) loss functions (e.g., MSE or L1 loss). The

network with these objectives can be optimized easily, but it tends to create blurry artifacts

and fails to recover the structural details. This characteristic can be problematic since a

human can judge the absence of high-frequency information effortlessly [24]. Hence, to

overcome the inherent issue of using pixel-based losses, a generative adversarial network

(GAN) [25] has been adopted to the SR field [24]. By doing so, GAN-based methods show

promising results in preserving human-perceptive quality. However, since using only an

adversarial loss makes the training process unstable, most of the GAN-based models are

trained with the addition of pixel losses [24, 16]. To overcome the inherent problems of

using pixel-based losses, Johnson et.al., [26] introduces the perceptual loss that calculates

the distance between the embedded features of two output images.

To increase the perceptual quality, EnhanceNet [32] and TSRN [33] adopt texture

matching loss [34] in combination with adversarial training and perceptual losses. By
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providing texture information, the model can produce more realistic textures and reduce

artifacts. ESRGAN [16] improves the SRGAN by replacing the standard residual unit [14]

with the residual-in-residual dense block (RRDB) inspired by the SRDenseNet [15]. In

addition, this model uses the relative discriminator loss [35]. However, the aforementioned

models are not suitable for real-world applications despite the great visual quality of the SR

output, because of the heavy computational requirements. On the contrary, our proposed

models create photo-realistic images with a reasonable amount of computation.

In the photo-realistic SR task, measuring the quality of the resulting image is a major

issue. There are many studies that propose distortion-based metrics for image quality

assessment such as structural similarity [36]. But these approaches do not always reflect

the human’s perception of visual quality, and some metrics often contradict human judg-

ment [24]. Considering the trade-off, we mainly use NIMA [37] and LPIPS [38] perceptual

quality metrics as our benchmark test. NIMA predicts the distribution of human opin-

ion scores using a deep network. It makes the assessment non-referentially, where all the

evaluation is done without ground-truth images. LPIPS measures the perceptual quality

by using the distance between the features generated by a pretrained network. Upon the

pretrained network, they add an extra linear layer and fine-tune it to a human-perceptual

dataset. In our experiments, we use a fine-tuned AlexNet [39] as the pretrained network

needed to compute these measures.

Efficient deep neural network. There has been a rising interest in building a small

and efficient network [40]. These approaches can be categorized into three groups: 1)

Compressing pretrained networks using pruning or quantizing techniques, 2) transferring

knowledge of a deep model to a shallow one, and 3) designing small but efficient models. In

this section, we summarize the latter category, which aims to build a lean neural network

in terms of design engineering, as it matches our approach most closely.

Iandola et.al., [41] introduces SqueezeNet to build a parameter-efficient architecture

based on AlexNet [39]. By doing so, they achieve comparable classification accuracy

with 50× fewer parameters than the baseline model. Unlike SqueezeNet, MobileNet [40]

aims to decrease the number of operations to reduce the inference runtime. This model
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Figure 2.1: Network architecture of CARN and PCARN. (Top) Generator network.

This network consists of cascading blocks and upsample blocks. (Bottom) Discriminator

network with corresponding kernel size (k), number of feature map (n), and stride (s)

indicated for each convolution layer.

decomposes the standard convolution to 1×1 and depthwise separable convolutions. While

the MobileNet effectively cuts down the computational cost, 1×1 convolution becomes the

new bottleneck and thus can be the limitation to pushing down the overall cost. To

mitigate this issue, ShuffleNet variants [42] use the channel shuffle unit following the

1×1 group convolution. Referring to the recent literature [40, 42], we apply a depthwise

separable convolution technique in residual blocks to build a fast and lightweight SR model.

Instead of using depthwise separable convolution, however, we use group convolution to

make the efficiency of the network tunable.

2.3 Approach

In this section, we first introduce cascading residual network (CARN) in Section 2.3.1.

Then, in Section 2.3.2, we describe photo-realistic CARN (PCARN) which is the improved

version in terms of the perceptual quality. Finally, we discuss on how to make more efficient

SR networks by showing CARN-M and PCARN-M (Mobile) in Section 2.3.3.
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Figure 2.2: Structures of local blocks in CARN and PCARN. (a) Residual block.

(b) Cascading block composed of residual blocks and local cascading connections.

2.3.1 Cascading Residual Network

The main architecture of our generator (CARN) is based on the EDSR [14]. The

prime difference between EDSR-like networks and ours is the presence of local and global

cascading modules. Figure 2.1 (top) graphically depicts how global cascading occurs. The

outputs of intermediary features are cascaded into the higher blocks and finally converge

on a single 1×1 convolution layer. Note that the intermediary modules are implemented

as cascading blocks, which also host cascading connections themselves in a local way.

Such local cascading operations (Figure 2.2b) is identical to a global one, except that the

backbone units are the residual blocks.

To express how cascading works formally, we first define the standard residual block

(Figure 2.2a) as Ri(H
i−1;W i

R), where H i−1 is the input feature of the i-th residual block

and W i
R is the parameter set of the convolution layers inside of each residual blocks. Then,

we replace the residual block with the local cascading block (Figure 2.2b). To formulate

the local cascading as well, we denote Bi,j as the output of the j-th residual block in the

i-th cascading block, and W i
local as the set of parameters of the i-th local cascading block.

14



Then, the i-th local cascading block Bi
local is defined as in Equation 2.1.

Bi
local

(
H i−1;W i

local

)
≡ Bi,U , (2.1)

where Bi,U is defined recursively from the Bi,u’s as:

Bi,0 = H i−1

Bi,u = g
([
Bi,0, . . . , Bi,u−1, Ru

(
Bi,u−1;W u

R

)])
for u = 1, . . . , U , (2.2)

where, g is a 1×1 convolution layer. Finally, we define the output of the final cascading

block HB by combining all H i’s for i = 0, · · · , b− 1.

H0 = f (X;Wc)

HB = g
([
H0, . . . ,Hb−1, BB

local

(
Hb−1;W b

B )]
)

for b = 1, . . . , B, (2.3)

where X is the input LR image, f is the first convolution layer (with parameter Wc) of the

network, and W b
B is the parameter set of each cascading block. By applying the cascading

mechanism on the local and global levels, we can get two advantages:

1. The model incorporates features from multiple layers, which allows learning multi-

level feature representations.

2. The multi-level cascading connection operates as a multi-level shortcut connection

that easily propagates information from lower to higher layers (and vice-versa, in the

case of back-propagation). Hence, the network can reconstruct the LR image based

on multi-level features, and the upsampling unit also upsamples images by taking

diverse features (from multiple layers) into account.

Thus, our design helps the model to boost SR performance. We will show how such

modules effectively work in Section 2.4.3. Inspired by VDSR [29] and EDSR [14], we apply

the multi-scale learning by embedding all up-sample blocks to a single network (Figure
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Figure 2.3: Illustration of the multi-scale discriminator. Input image is resized

using average pooling and each downsampled image is taken by the corresponding scale

discriminator. Total discriminative loss is calculated by summing over all the scale.

2.1). The benefit of using such a strategy is that it can process multiple scales using a

single trained model. It also helps us alleviate the burden of multiple model sizes when

deploying the SR application on small devices since our (P)CARN family only needs a

single network for multiple scales.

In addition to the cascading scheme, we use the following design choices to advance

the network performance: 1) Inspired by the VDSR [29], we adopt the global residual

learning to our framework. To do that, we aggregate the output of the entry layers

and the final 1×1 convolution layer right before the upsampling block. Formally, it can

be written as O = Hb + H0, where the final feature map O becomes the input to the

upsampling block. The effect of this final addition might appear redundant since the

output of the first convolution is already added to the 1×1 before being added again in

the next step. Nonetheless, we found that this duplicate addition is beneficial to the overall

SR performance with little computational overhead. 2) We find that nonlinearities (ReLU

in this case) following the 1×1 convolution layer marginally decreased the performance so

that we remove these. On the other hand, we add nonlinearities in the upsampling unit

to increase the expressive power of the network.
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2.3.2 Improving the Perceptual Quality

Following the GAN formulation [25], we define a discriminator network D, which we

optimize in an alternative procedure along with the CARN generator G. Using the dis-

criminator and the generator, we denote the adversarial loss as:

LGAN (G,D) = EIHR
[logD(IHR)] + EILR

[log(1−D(G(ILR)))] , (2.4)

where IHR and ILR denote the HR and LR images, respectively. The idea of adversarial

loss is that it trains the generative model G to fool the discriminator D, whereas the

discriminator is trained to distinguish whether the images are from the SR or the HR

sets. This formulation encourages the generator to create perceptually superior images

compared to the pixel-based (distortion-based) losses.

Many previous works have mixed the adversarial loss with a traditional pixel-based loss

to stabilize the training process [24, 16]. In this case, the task of a generator is not only

to fool the discriminator but also to create an SR image similar to the HR. We also take

this option but use the VGG loss [26] instead of the pixel-based loss to avoid blurriness.

The VGG loss is defined as the distance between the outputs of the ReLU layers of the

pre-trained VGG-19 network [43]. Formally, we denote the output feature map of the j-th

ReLU following a convolutional layer before the i-th pooling layer as φi,j . Then, we define

the VGG loss as the L2 distance between the feature representation of the HR image IHR,

and the super-resoluted image G(ILR):

LV GG(G) =
1

Wi,jHi,j

Wi,j∑
x

Hi,j∑
y

[φi,j(IHR)x,y − φi,j(G(ILR))x,y]
2 . (2.5)

Here, Wi,j and Hi,j are the spatial resolutions of the feature map. We use i = j = 5.

To enhance the fine details of the computed outputs, we adopt the multi-scale discrim-

inator strategy (Figure 2.3). The idea is to use multiple discriminators instead of a single

one to make each discriminator handle a specific scale. Thus, it allows the model to gather
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information across coarse- to fine-resolution images. To do so, we first downsample the

input image (SR or HR) to make an image pyramid. Then, the scaled images are fed

into the corresponding discriminators, and finally the multi-scale discriminator loss LMS
D

is calculated by collecting each of the losses as in the equation below.

LMS
D =

S∑
i

Di(Fi(I)), (2.6)

where I is the input image and F (.) is the scale-specific downsample function. In all our

experiments, we use average pooling as the downsampling module and set S as three.

The total loss for the generator is computed by summing the GAN and VGG losses as:

LG = LMS
GAN + λLV GG, (2.7)

where LMS
GAN denotes the adversarial loss in terms of the generator with multi-scale dis-

criminator and λ is the hyperparameter to balance the two losses.

2.3.3 Improving the Efficiency

To improve the efficiency of CARN and PCARN, we propose an efficient residual and

cascading block. This approach is analogous to the MobileNet [40], but we use group

convolution instead of depthwise separable convolution. Our efficient residual (EResid-

ual) block is composed of two consecutive 3×3 group convolutions and a single pointwise

convolution (Figure 2.4a). The advantage of using group convolution over the depthwise

separable convolution is that it makes the efficiency of the model manually tunable. Thus,

the user can choose the appropriate group count for the desired performance, since the

number of groups and the performance are in a trade-off relationship.

The analysis of the efficiency of the EResidual block usage is as follows. Let K be the

kernel size and Cin, Cout be the number of input and output channels. Since we retain

the spatial resolution of the feature map by the padding, we can denote F to be both the
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Figure 2.4: Simplified structures of efficient cascading blocks. (a) Efficient residual

block, and (b) is the efficient cascading block. Hatched boxes in (b) denote the residual

block with a parameter tying.

input and output feature size. Then, the cost of a standard residual block is

2×
(
K2 · Cin · Cout · F 2

)
. (2.8)

Note that we exclude the cost of addition or nonlinearity, and consider only the convolution

layers. This is because both the standard and the efficient blocks have the same number

of such modules and these occupy a negligible portion of the entire computational cost.

Let G be the number of groups. Then, the cost of an EResidual block, which consists

of two group convolutions and one 1×1 convolution, is as given in Equation 2.9.

2×
(
K2 · Cin ·

Cout
G
· F 2

)
+ Cin · Cout · F 2 (2.9)

Hence, by changing a standard residual block to our efficient block, we can reduce the
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computation by the ratio of

2×
(
K2 · Cin · Cout

G · F 2
)

+ Cin · Cout · F 2

2× (K2 · Cin · Cout · F 2)
=

1

G
+

1

2K2
. (2.10)

Because we use a 3×3 kernel size and the number of the channels is constant except the

entry, exit, and upsampling block, the EResidual block reduces the computation from 1.8

up to 14 times depending on the number of groups. To find the best trade-off between SR

quality and computation cost, we perform an extensive case study (Section 2.4.5).

To further reduce the parameters, we apply a technique that is used by the recursive

network [18]. In other words, we force the EResidual blocks to be shared in the cascading

block, so only one-third of the parameters are needed compared to the standard block.

Figure 2.4b shows our efficient cascading (ECascading) block after applying such a scheme.

Unlike the previous studies that adopt the recursive scheme [18], we do not increase the

depth or the width of the network, so the number of operations is kept the same.

2.3.4 Differences with Prior Works

Difference with MemNet. MemNet [19] and ours have a similar motivation, but there

are two main distinctions from our schemes. 1) Feature fusion is done in a different

location and manner. For instance, MemNet fuses the output features of each recursive

unit at the end of the memory blocks. On the other hand, we gather the information

at every possible site in the local block, thus can boost up the representation power via

additional layers. 2) MemNet takes an early-upsample approach which upsamples the

image before giving it to the model. Although it becomes easier to implement residual

learning, it worsens the model efficiency substantially. In contrast, our model gets LR

images and intermediate features are upsampled at the end of the network, which enables

us to accomplish a good balance between the SR quality and efficiency.

Difference with DenseNet. SRDenseNet [15] uses a densely connected block and skip

connection. Although the overall design concept can be similar, our model has two main

advantages. 1) In our models, the output of each block is associated with a global cas-
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cading connection which is a generalized form of the skip connection. In SRDenseNet, all

levels of features are combined after the final dense block, but our global cascading scheme

connects all blocks, which behaves as a multi-level skip connection. 2) The connectivity

schemes that we use are economical for both memory and speed. n a densely connected

block [15], concatenated features are distilled to reduce the number of channels only at the

end of the block. Such a block design can allow fluent information flow (since no channel

reducing operation exists), but it requires a high amount of computation because blocks

have to carry all the intermediate features. In contrast, we incorporate features using an

additional 1×1 convolution layer at each concatenation point, which facilitates composing

more lightweight models.

2.4 Experiment

2.4.1 Experimental Setting

Datasets. We use the DIV2K dataset [44], which consists of 800 training and 100 vali-

dation images in 2K resolution. Because of the richness of this dataset, recent SR mod-

els [14, 16] use DIV2K as well. To prepare the training input, we randomly crop images to

the 48×48 LR patches and augment to horizontal flip or rotation. To enable the multi-scale

training, we first randomly select the scale from [2, 4]. Then we construct the training

batch using a chosen scale since our model can process only a single scale for each batch.

For the test and benchmark, Set5 [45], Set14 [46], B100 [47] and Urban100 [48] datasets

are used.

Implementation details. For the CARN generator, we set B = U = 3 and the number

of channels in all convolutional layers to 64 except the first, last layer, and upsample block.

For the upsampling unit, we use the pixelshuffle layer following the convolutional layer that

is proposed in ESPCN [28]. Our discriminator (of PCARN) network has 9 convolutional

layers (Figure 2.1). We train our models with ADAM by setting β1 = 0.9, β2 = 0.999, and

ε = 10−8 in 6× 105 steps. The minibatch and patch sizes are 64 and 48×48, respectively.
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We use the initial learning rate as 10−4 and halved every 4 × 105 steps. All the weights

and biases are initialized by θ ∼ U(−k, k) with k = 1/
√
cin where, cin is the number of

channels of input feature map. In Section 2.4.4, we will describe the detailed analysis of

the weight initialization strategy.

To train our model in a multi-scale manner, we first set the scaling factor to one of ×2,

×3, and ×4 because our model can only process a single scale for each batch. We use the

L1 loss as our loss function instead of the L2. The L2 loss is widely used in the image

restoration task due to its relationship with the peak signal-to-noise ratio (PSNR). How-

ever, in our experiments, L1 provides better convergence and performance. The downside

of the L1 loss is that the convergence speed is relatively slower than that of L2 without

the residual block. However, this drawback could be mitigated by using a ResNet-style

model. With trained CARN in pixel-based loss, we set CARN as a generator and train

both the generator and discriminator alternatively to make the perceptually improved

CARN (PCARN). When train in an adversarial manner, we fine-tune the generator for

2× 105 steps following the training strategy of SRGAN [24].

2.4.2 Evaluation Metric

To evaluate the performance of the image restoration model, including SR, we use

following metrics throughout the thesis: peak-signal-to-noise ratio (PSNR), structural

similarity index (SSIM) [49], learned perceptual image patch similarity (LPIPS) [50], and

neural image assesment (NIMA) [37]. PSNR is defined using the maximum pixel value

and mean-squared error between the two images in the log-space. SSIM [49] measures

the structural similarity between two images based on the luminance, contrast and struc-

ture. Note that we use Y channel only (by first converting the RGB image into YCbCR

colorspace) when calculating PSNR and SSIM unless otherwise specified.

Although high PSNR and high SSIM of an image are generally interpreted as a good

image restoration quality, it is well known that these metrics cannot represent human

visual perception very well [50]. LPIPS [50] has been recently proposed to address this

mismatch. It measures the perceptual distance of the restored images using the L1 dis-
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Table 2.1: Analysis of the effect of model design choices. Local, Global and L/G

means the models with local, global, and both cascading connection respectively.

Model Params. PSNR SSIM

Baseline 963K 28.42±0.02 0.7773±3e-4

+ Local 1,074K 28.45±0.01 0.7780±3e-4

+ Global 1,000K 28.47±0.02 0.7787±4e-4

+ L/G 1,111K 28.49±0.02 0.7788±3e-4

+ Residual 1,111K 28.50±0.01 0.7792±3e-4

tance between features extracted from the pre-trained AlexNet [39] on distortion dataset

specially designed for the quality assessment so that this gives a better perceptual score

between two images than the traditional pixel-based metrics. Similarly, NIMA [37] is de-

signed of purpose measuring the human-perception score of the image. However, unlike

LPIPS, NIMA is a non-reference image assessment metric; no reference image is needed

to calculate the score. To do that, this metric uses the pre-trained network on the image

and its paired aesthetic score based on the human rating. This concept leads the NIMA

score to reflect the human opinion score of the given image.

To compare the efficiency, we mainly use the number of the network parameters and

the number of the operations. The latter measurement is based on MultAdds, which is

the number of composite multiply-accumulate operations for a single image. We assume

the HR image to be 720p (1280×720) to calculate MultAdds. MultAdds is calculated by

the multiplication of the parameters of the layer with the output resolution of the feature,

thus this is increased when the network is enlarged or the feature map size is expanded.

2.4.3 Model Design Analysis

To investigate the performance of the proposed methods, we analyze our models via

ablation study. We select the baseline to be the SRResNet [24]. Other models have the

same topology except for the inherent modules (e.g., additional 1×1 convolution) that

are needed for each particular architecture. Thus, the overall number of parameters is

increased by up to 15% from the baseline.
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Table 2.2: Model analysis study. MSD indicates the multi-scale discriminator.

Model LPIPS PSNR SSIM

CARN (L1) 0.289±1e-3 28.50±0.01 0.7792±3e-4

+ GAN 0.162±5e-3 26.36±0.25 0.7120±6e-3

+ MSD 0.155±2e-3 26.10±0.17 0.6980±8e-3

PCARN (L1) PCARNGround-truth HR

Figure 2.5: Visual comparison of adversarial training. We compare the results

trained with PCARN and without the adversarial training, PCARN (L1).

Table 2.1 shows the model analysis on the effect of cascading modules and the global

residual learning scheme. A model with local cascading improves the baseline SR perfor-

mance. We conjecture that this is because the cascading module passes not only the inputs

but also the mixture of intermediate features to the next block, thus leveraging multi-level

representations. By incorporating multi-level representations, the model can consider a

variety of information from many different receptive fields when reconstructing the image.

We observed higher performance gain with the global cascading scheme. This is because

the advantages of the local scheme are limited to each block, which lessens the model’s

ability to exploit the cascading effect. One major benefit of the global cascading is that it

allows information integration from lower layers, and this information shortcut provides

useful clues for reconstructing the HR image in the upsampling and final reconstructing

processes. Besides, we employ the global residual learning scheme shown in many recent

SR methods [29]. The benefit of using it can be minor, since the roles of the global cas-

cading and residual learning overlap. However, we choose to embed the global residual

learning into our framework since it does improve performance with negligible overhead.
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To build a photo-realistic SR model, it is essential to design a well-functioning dis-

criminator. To examine how the choice of discriminator affects the SR performance, we

conducted a series of comparisons across various types of discriminator losses by using

the LPIPS [38] metric. As shown in Table 2.2, PCARN with adversarial training (+GAN)

outperforms the baseline by a large margin. Figure 2.5 also shows the advantage of using

GAN, where it successfully recovers the fine details and generates more photo-realistic

images. However, because the model is not directly optimized using pixel-based loss, the

performance of pixel-based metrics (PSNR and SSIM) is degraded. Moreover, the overall

training process is substantially unstable and shows a high variance in all metrics. Us-

ing the multi-scale discriminator (+MSD) also gives an additional gain to the LPIPS. The

main reason is that all the generators can distinguish between fake and real more easily

since each generator covers different receptive fields. This gives the generator more useful

information to restore both fine- and coarse-level structures.

2.4.4 Initialization Strategy

Appropriately initializing the network is the key component for boosting performance.

To verify the optimal initialization scheme for our model, we experimented by comparing

the benchmark to six common initialization schemes: uniform, and normal distribution

with various settings, as shown in Table 2.3. Note that we conduct this experiment

using the PCARN with L1 loss since when training a model with GAN loss, we use

the pre-trained network (with L1 loss) as the starting point. Interestingly, the MSRA

initialization [51] (4th row) and the high-range uniform (5th row) were inferior to the other

methods. We argue that a narrow 1×1 convolution affects the quality of initialization since

the high-variance initial values tend to result in high-variance activations. Multiplying the

initial random values by 0.1 (1st∼3rd rows) degrades the performance as well.

We hypothesize that the degraded SR performance of other initialization schemes is

mainly due to the saturated activations of the network. If the activation generated from

the deep layer saturates, useful information can be lost and the gradient signal can vanish,

which results in poor performance of the model [52]. As shown in Figure 2.7, initializing

25



Table 2.3: Effect of the weight initialization. F denotes the number of the input

channels (fan-in). std/range behaves as a standard deviation for the zero-mean normal

distribution (N(0, std)), or as a range for uniform distribution (Unif(−range, range)).

Distribution std/range PSNR SSIM

Normal 0.1×
√

2/F 28.46±0.01 0.7781±3e-4

Uniform 0.1×
√

6/F 28.47±0.01 0.7782±3e-4

Uniform 0.1×
√

1/F 28.45±0.02 0.7775±4e-4

Normal 1.0×
√

2/F 28.45±0.02 0.7777±3e-4

Uniform 1.0×
√

6/F 28.44±0.01 0.7778±2e-4

Uniform 1.0×
√

1/F 28.50±0.01 0.7791±3e-4

0.15 0.10 0.05 0.00 0.05 0.10 0.15

ResNet - 1.0 × N(0, 2/F )
Ours - 1.0 × N(0, 2/F )
Ours - 0.1 × U(± 1/F )
Ours - 1.0 × U(± 1/F )

Figure 2.6: Distribution for the randomly initialized networks. We plot 100K

parameters for each model using 1000 bins. Each of the parameter distributions is from

diverse sources because of the variation in the number of input channels.

with 1.0 × U(±
√

1/F ) does not suffer the saturation behavior, while others drive the

activations toward zero or infinity. Figure 2.6 explains why such initialization strategies

suffer saturation. Unlike the ResNet [53] results (black solid), the weights of our network

initialized with 1.0 × N(
√

2/F ) (blue dots) have high-variance due to the narrow 1×1

convolutions, so the output activations can be large. On the other hand, initializing with

0.1×U(±
√

1/F ) (red dots) makes the range of the parameters too narrow, thus saturating

activations in deep layers toward zero.
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(a) Activation values normalized histogram from the first layer.
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(b) Activation values normalized histogram from the second cascading
block.
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(c) Activation values normalized histogram from the last cascading block.

Figure 2.7: Activation values normalized histogram from different initializations.

We plot the activation (before ReLU) from the first layer (a), the middle block (b), and

the final block (c). A model initialized with 1.0 × U(±
√

1/F ) (right) effectively carries

the signal to the last block, while others tend to saturate activations. Note that we clip

the values to [-0.5, 0.5] and normalize the histogram.
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Figure 2.8: Efficiency analysis of efficient models. We evaluate all models on Set14

with ×4 scale. G represents the number of groups of the group convolution, and R means

the model with the recursive network scheme.

2.4.5 Efficiency Trade-off

In this section, we dissect the efficiency by varying the group size and the existence

of the recursive scheme. Here, for a concise explanation, we confine the SR network as

CARN only (which is trained by L1 loss), however, the insight of this analysis beneficial to

the photo-realistic version of our method as well. Figure 2.8 depicts the trade-off analysis

between the SR performance and efficiency of the efficient CARN that uses convolution

and a recursive scheme. We use the model with L1 loss and evaluate using pixel-based

metrics, PSNR and SSIM. Although all efficient models perform worse than the CARN, the

number of parameters and operations are decreased dramatically. We choose G4R as the

best-balanced model, which we denote as CARN-M (mobile) since the effect of compressing

the model is reduced when the number of groups is larger than four. As a result, CARN-M

reduces the number of parameters by four times and the number of operations by nearly

three times with a 0.20 dB loss in PSNR and 0.0053 in SSIM, compared to the CARN.

In addition to our trade-off analysis, we also observed that depthwise separable con-

volution (G64R) extremely degrades the performance (-0.32 dB). There can be many ex-

planations why such an observation occurs, but we suspect that this is because the image
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Figure 2.9: Trade-off between performance vs. number of operations and pa-

rameters on Set14 ×4 dataset. The x-axis and the y-axis denote the Multi-Adds and

PSNR, and the size of the circle represents the number of parameters. The Mult-Adds is

computed by assuming that the resolution of HR image is 720p.

recognition and generation tasks are entirely different, so applying group and depthwise

convolution, which are mainly used in recognition fields, has to be done very carefully.

Therefore, creating an efficient SR model (or image generation model in general) needs

more investigation with plenty of room to improve performance.

2.4.6 Comparison with Pixel-based Methods

In this section, we compare CARN and CARN-M with previous methods that are

trained with pixel-based losses using PSNR and the structural similarity index (SSIM) [36]

metrics. In Figure 2.9, we benchmark CARN family against the various benchmark al-

gorithms in terms of the Mult-Adds and the number of the parameters on the Set14 ×4

dataset. Here, CARN outperforms all previous models that have less than 5M parameters.

Especially, CARN has a similar number of parameters to that of DRCN [54], SelNet [55]

and SRDenseNet [15], but we outperform all three models. The MDSR [14] achieves better

performance than ours, which is not surprising because MDSR has 8M parameters which

are nearly six times more parameters than ours. The CARN-M model also outperforms

most of the benchmark methods and shows comparable results against the heavy models.
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Moreover, our models are most efficient in terms of the computation cost: CARN shows

second-best results with 90.9G Mult-Adds, which is on par with SelNet [55]. This efficiency

mainly comes from the late-upsample approach that many recent models [15, 56, 21] used.

In addition, our novel cascading mechanism shows increased performance compared to

other similar approaches. For example, CARN outperforms its most similar model SelNet

by a margin of 0.11 PSNR using a similar number of operations. Also, the CARN-M

model obtains comparable results against computationally expensive models, while only

requiring a similar number of operations to SRCNN.

Table 2.4 also shows the quantitative comparisons of the performances over the bench-

mark datasets. Note that MDSR is excluded from this table because we only compare

models that have a roughly similar number of parameters as ours; MDSR has a parameter

set whose size is four times larger than that of the second-largest model. Our CARN

exceeds all the previous methods on numerous benchmark datasets. CARN-M model

achieves comparable results using very few operations. We would also like to emphasize

that although CARN-M has more parameters than SRCNN or DRRN, it is tolerable in

real-world scenarios. The sizes of SRCNN and CARN-M are 200KB and 1.6MB, respec-

tively, all of which are acceptable on recent mobile devices.

To make our models even more lightweight, we apply the multi-scale learning approach.

The benefit of using multi-scale learning is that it can process multiple scales using a

single trained model. This helps us alleviate the burden of heavy-weight model size when

deploying the SR application on mobile devices; CARN(-M) only needs a single fixed model

for multiple scales, whereas even the state-of-the-art algorithms require to train separate

models for each supported scale. This property is well-suited for real-world products

because the size of the applications has to be fixed while the scale of given LR images

could vary. Using multi-scale learning in our models increases the number of parameters

since the network has to contain possible upsampling layers. On the other hand, VDSR

and DRRN do not require this extra burden, even if multi-scale learning is performed,

because they upsample the image before processing it.

In Figure 2.10, we visually illustrate the qualitative comparisons over three datasets
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Table 2.4: Quantitative comparison of pixel-based SR methods. Red/blue text

indicates the best/second-best.

Scale Model Params MultAdds
Set5 Set14 B100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

2

SRCNN[13] 57K 52.7G 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946
FSRCNN [21] 12K 6.0G 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020
VDSR [29] 665K 612.6G 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140
DRCN [54] 1,774K 17,974.3G 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133
CNF [57] 337K 311.0G 37.66/0.9590 33.38/0.9136 31.91/0.8962 -
LapSRN [56] 813K 29.9G 37.52/0.9590 33.08/0.9130 31.80/0.8950 30.41/0.9100
DRRN [23] 297K 6,796.9G 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188
BTSRN [58] 410K 207.7G 37.75/- 33.20/- 32.05/- 31.63/-
MemNet [19] 677K 2,662.4G 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195
SelNet [55] 974K 225.7G 37.89/0.9598 33.61/0.9160 32.08/0.8984 -
CARN (ours) 1,592K 222.8G 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256
CARN-M (ours) 412K 91.2G 37.53/0.9583 33.26/0.9141 31.92/0.8960 31.23/0.9193

3

SRCNN [13] 57K 52.7G 32.75/0.9090 29.28/0.8209 28.41/0.7863 26.24/0.7989
FSRCNN [21] 12K 5.0G 33.16/0.9140 29.43/0.8242 28.53/0.7910 26.43/0.8080
VDSR [29] 665K 612.6G 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279
DRCN [54] 1,774K 17,974.3G 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276
CNF [57] 337K 311.0G 33.74/0.9226 29.90/0.8322 28.82/0.7980 -
DRRN [23] 297K 6,796.9G 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378
BTSRN [58] 410K 176.2G 34.03/- 29.90/- 28.97/- 27.75/-
MemNet [19] 677K 2,662.4G 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376
SelNet [55] 1,159K 120.0G 34.27/0.9257 30.30/0.8399 28.97/0.8025 -
CARN (ours) 1,592K 118.8G 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493
CARN-M (ours) 412K 46.1G 33.99/0.9236 30.08/0.8367 28.91/0.8000 27.55/0.8385

4

SRCNN [13] 57K 52.7G 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221
FSRCNN [21] 12K 4.6G 30.71/0.8657 27.59/0.7535 26.98/0.7150 24.62/0.7280
VDSR [29] 665K 612.6G 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524
DRCN [54] 1,774K 17,974.3G 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510
CNF [57] 337K 311.0G 31.55/0.8856 28.15/0.7680 27.32/0.7253 -
LapSRN [56] 813K 149.4G 31.54/0.8850 28.19/0.7720 27.32/0.7280 25.21/0.7560
DRRN [23] 297K 6,796.9G 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638
BTSRN [58] 410K 165.2G 31.85/- 28.20/- 27.47/- 25.74/-
MemNet [19] 677K 2,662.4G 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630
SelNet [55] 1,417K 83.1G 32.00/0.8931 28.49/0.7783 27.44/0.7325 -
SRDenseNet [15] 2,015K 389.9G 32.02/0.8934 28.50/0.7782 27.53/0.7337 26.05/0.7819
CARN (ours) 1,592K 90.9G 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837
CARN-M (ours) 412K 32.5G 31.92/0.8903 28.42/0.7762 27.44/0.7304 25.62/0.7694
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Figure 2.10: Qualitative comparison of pixel-based SR methods.
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Table 2.5: Quantitative comparison (LPIPS) of perception-based SR meth-

ods. Lower score is better. MAs denotes MultAdds. (Above) Pixel-based SR methods.

(Below) Perception-based SR methods including PCARN variants.

Model Params MAs Set5 Set14 B100 Urban100

SRCNN [13] 57K 52.7G 0.201 0.315 0.410 0.316
MSLapSRN [20] 222K 435.9G 0.178 0.299 0.389 0.252
SRResNet [24] 1,543K 127.8G 0.173 0.284 0.375 0.226

CARN 1,589K 90.9G 0.177 0.290 0.381 0.237

SRGAN [24] 1,543K 127.8G 0.088 0.174 0.203 0.156
ENet [32] 1,073K 120.6G 0.099 0.162 0.210 0.171
TSRN-G [33] 1,073K 120.6G 0.088 0.155 0.196 0.154
PCARN 1,589K 90.9G 0.075 0.145 0.188 0.152
PCARN-M 412K 32.5G 0.080 0.150 0.198 0.167

(Set14, B100 and Urban100) for ×4 scale. It can be seen that our model works better than

others and accurately reconstructs not only stripes and line patterns, but also complex

objects such as hand and street lamps.

2.4.7 Comparison with Perception-based Methods

Here, we benchmark the performance using the perception-based metrics, LPIPS [38]

and NIMA [37]. We compare with SRGAN [24], EnhanceNet [32] (shortly ENet), and

TSRN [33] (we choose TSRN-G since it is better in LPIPS and NIMA). In addition, we also

present the performance of the pixel-based SR networks (SRCNN [13], MSLapSRN [20],

SRResNet [24], and CARN) to show the effect of using perceptual-oriented losses.

Table 2.5 and 2.6 depict the quantitative comparisons for the ×4 scale datasets. Among

all the methods, our PCARN and PCARN-M have the least MultAdds and a similar

number of parameters with the other models. With the limited resources, our models

outperform all the competitors in the LPIPS metric and show comparable results on the

NIMA score. All the pixel-based methods show lower perceptual scores although the PSNR

and SSIM are higher. This is because the pixel loss is not aligned with human perception.

For those who fall into the perception-based category, SRGAN, ENet, and TSRN-G have

an analogous number of parameters and MultAdds since they design the generator similar
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Table 2.6: Quantitative comparison (NIMA) of perception-based SR meth-

ods. Higher score is better. MAs denotes MultAdds. (Above) Pixel-based SR methods.

(Below) Perception-based SR methods including PCARN variants.

Model Params MAs Set5 Set14 B100 Urban100

SRCNN [13] 57K 52.7G 4.32±1.63 4.37±1.69 4.34±1.70 4.62±1.64
MSLapSRN [20] 222K 435.9G 4.67±1.58 4.80±1.66 4.61±1.66 5.04±1.60
SRResNet [24] 1,543K 127.8G 4.74±1.57 4.91±1.64 4.69±1.64 5.14±1.60
CARN 1,589K 90.9G 4.73±1.56 4.91±1.64 4.69±1.64 5.15±1.60

SRGAN [24] 1,543K 127.8G 4.87±1.56 5.00±1.62 4.94±1.64 5.19±1.59
ENet [32] 1,073K 120.6G 4.86±1.58 5.13±1.64 5.07±1.65 5.20±1.59
TSRN-G [33] 1,073K 120.6G 5.05±1.57 5.22±1.61 5.17±1.61 5.27±1.58
PCARN 1,589K 90.9G 4.93±1.53 5.06±1.60 5.08±1.61 5.24±1.58
PCARN-M 412K 32.5G 4.87±1.53 4.98±1.61 5.01±1.62 5.18±1.58

to SRResNet. In contrast, our method shows the best performance on the LPIPS metric

using a small number of MultAdds (120.G vs. 90.9G). Furthermore, PCARN-M shows

comparable results using only one-fourth of both parameters and operations. For the

NIMA metric, our PCARN shows comparable results with the TSRN-G, and PCARN-M

achieves akin performance to the other competitors.

We also compare the models using pixel-based metrics such as PSNR and SSIM (Table

2.7). All the models trained using the pixel loss outperform perception-based SR methods

since the pixel loss is directly related to the pixel-based metrics. Among the perception-

based SR networks (below rows), the proposed PCARN family shows the best performance

for all benchmark datasets. Such observation shows that our models achieve a good balance

between perception and distortion, which is the ultimate goal of the SR algorithm [59].

We also report the perception scores on the various scale factors (Table 2.8). Note that

our models are capable of processing multiple scale factors with a single network. Unlike

ours, a network without multi-scale training can only restore a specific scale factor, which

limits the generalization ability to unseen degradation. However, our methods enjoy such

generalization capability by using the multi-scale training strategy.

In Figure 2.13, we illustrate the qualitative comparisons of our methods for the various

×4 scale datasets. It can be seen that our models work better than others and accurately
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Table 2.7: Quantitative comparison (PSNR/SSIM) of perception-based SR

methods. Higher score is better. MAs denotes MultAdds. (Above) Pixel-based SR

methods. (Below) Perception-based SR methods including PCARN variants.

Model Params MAs
Set5 Set14 B100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

SRCNN [13] 57K 52.7G 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221
MSLapSRN [20] 222K 435.9G 31.74/0.8890 28.26/0.7740 27.43/0.7310 25.51/0.7680
SRResNet [24] 1,543K 127.8G 32.05/0.8910 28.53/0.7804 27.57/0.7354 26.07/0.7839
CARN 1,589K 90.9G 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837

SRGAN [24] 1,543K 127.8G 28.70/0.8281 25.51/0.6763 24.37/0.6190 23.75/0.7063
ENet [32] 1,073K 120.6G 28.85/0.8160 26.03/0.6858 25.26/0.6353 23.62/0.6925
TSRN-G [33] 1,073K 120.6G 28.98/0.8288 25.87/0.6890 25.19/0.6492 23.68/0.7049
PCARN 1,589K 90.9G 29.75/0.8393 26.57/0.7097 25.56/0.6534 24.17/0.7192
PCARN-M 412K 32.5G 29.38/0.8369 26.31/0.7087 25.48/0.6570 23.73/0.7043

Table 2.8: Records of the PCARN variants in diverse scales on LPIPS/NIMA.

Scale Model
Set5 Set14 B100 Urban100

LPIPS/NIMA LPIPS/NIMA LPIPS/NIMA LPIPS/NIMA

2
PCARN 0.019/4.87±1.55 0.045/5.12±1.62 0.060/4.98±1.63 0.040/5.24±1.60
PCARN-M 0.023/4.85±1.58 0.049/5.04±1.63 0.064/4.94±1.64 0.047/5.20±1.60

3
PCARN 0.044/4.87±1.54 0.096/5.12±1.60 0.129/5.04±1.62 0.095/5.21±1.58
PCARN-M 0.053/4.79±1.56 0.106/5.00±1.60 0.139/4.95±1.63 0.108/5.17±1.58

4
PCARN 0.075/4.93±1.53 0.145/5.06±1.60 0.188/5.08±1.61 0.152/5.24±1.58
PCARN-M 0.080/4.87±1.53 0.150/4.98±1.61 0.198/5.01±1.62 0.167/5.18±1.58

reconstruct not only the linear patterns but produce more photo-realistic textures, such

as the mane of the lion and pebbles on the ground. Moreover, the proposed networks also

generate cleaner outputs while other perception-based methods suffer visual artifacts.

To investigate how our models can generate SR images from different domains, we

examine the visual comparison on text images using manga109 [60] dataset (Figure 2.14).

Since humans can easily distinguish high-frequency details, it is important to adequately

recover the edge region in this task. Here, our method effectively restores various texts,

even those with very small fonts that are barely recognizable on the bicubic results. Our

GAN-based PCARN can produce sharp and realistic images. However, for some dense

structures (Figure 2.11), it generates undesirable artifacts, unlike the PCARN (L1). We

suspect that this is a common limitation shared by most, if not all, GAN-based methods.
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Figure 2.11: A failure case of PCARN. Our perception-based model is not able to

reconstruct the details without sufficient information when constructing a dense structure.

2.4.8 Execution Time

While MultAdds can reflect the heaviness of the model well, there still exists a misalign-

ment between the true execution times, especially when the models are run on GPUs [42].

To investigate the efficiency in the real devices, we evaluate the inference runtime with

other prior networks (Figure 2.12). In this benchmark, we compare computationally-

heavy models as well (ESRGAN [16], G-MGBP [61] and EPSR [62]). For fair comparison,

we perform inference on the same machine (Intel i5 CPU @3.3 GHz, 32GB RAM, and

NVIDIA TITAN X GPU). To calculate the inference time, we use a resolution of 320×240

for the LR input so that the network generates a 720p (1280×720) SR image.

For CPU execution (top row in Figure 2.12), the speed of our PCARN is faster than

the other methods such as SRGAN and SRResNet, while it produces a better result and

comparable with the EPSR and G-MGBP. Our PCARN-M network is the fastest, while on

a par with the heavy models. Such illustration is also reflected by the NIMA metric. The

PCARN and PCARN-M can obtain good results at a relatively low computational cost.

However, unlike to the results on CPU, our methods do not show such improvement on

the GPU (bottom row in Figure 2.12). In fact, our models show slightly worse execution

time than the ENet and TSRN-G. The reason is mainly due to the distinct characteristic

of CPU and GPU environments. For example, as empirically proved in recent study [42],

memory fragmentation reduces the parallelism which worsens the GPU speed a lot. In

our case, the cascading mechanism hinders GPU parallelism so that both PCARN and
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Figure 2.12: Execution time on the CPU/GPU environments. We measure the

the runtime on CPU and GPU settings with LPIPS and NIMA score. We use negative

LPIPS to match the direction of y-axis to the NIMA.

PCARN-M have less advantages on the GPU. Furthermore, group convolution used in

PCARN-M is not implemented in a GPU-friendly manner, diminishing the speed gap

between PCARN and PCARN-M.

2.5 Discussion

In this chapter, we introduced a deep convolutional network with a cascading scheme

for fast and accurate image SR. The core idea is adding multiple cascading connections

starting from each intermediary layer to the others on local and global levels. In addition,
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we enhance our model by using a multi-scale discriminator and achieved improved SR

quality over the recent models that have complexity on par with ours.

Future directions. While our methods achieve efficiency, there are remaining issues

such as improving the usability and robustness. First of all, the GPU execution time is

different from the time taken under the CPU setting (Section 2.4.8), despite the decreased

number of MultAdds. This phenomenon comes up because of the discrepancy between

the MultAdds and the actually-measured benchmark time. While MultAdds can reflect

the inference speed on the CPU, but for the GPU, there are many uncounted operations

that MultAdds does not account for. For example, on a GPU, it is critical to reduce the

memory access cost or to increase the parallelism level to decrease the inference time as

pointed out in ShuffleNetv2 [42]. Therefore, our future goal is to improve our framework

and build a GPU-friendly network by carefully modifying our modules and convolution.

Another issue is related to the limitation of the network itself, which manifests in failures

such as the bad reconstruction of small textures (Figure 2.11). For the future direction,

we hope to use ideas from example-based SR [63] or non-local neural networks [64] to

advance the model so that it can effectively enhance severely distorted regions.
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Figure 2.13: Qualitative comparison of perception-based SR methods.
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Figure 2.14: Qualitative comparison of perception-based SR methods on text

image. We benchmark on manga109 [65] dataset (scale ×4).

40



Chapter 3

Accurate and Lightweight
Image Restoration Model

Despite the advancement of deep image restoration methods, many approaches still

fail to deal with extreme cases such as ×8 scale super-resolution scenarios because of the

instability of training. The lightweight network presented in Chapter 2 also suffers the

same issue, thus we might want to scarify some of the efficiency in this extreme condition.

To address this, in this chapter, we adopt a progressive learning scheme for the deep

convolutional neural network. In detail, the overall training proceeds in multiple stages so

that the model gradually increases the output image resolution. In our experiments, we

show that this property yields a large performance gain compared to the non-progressive

learning methods. Our method also presents a good balance point between the restoration

performance and the efficiency compared to the previous heavier networks.

3.1 Overview

Even though the great performance of deep learning-based methods in super-resolution

task, their performance can greatly be degraded in extreme SR cases such as restoring ×8

scale downsampled image. This issue is mostly because of the single upsampling step since

most of the SR networks only focus on smaller scale resolutions (e.g., ×2, 3, 4). There are
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not many studies that deal with extreme scales of more than ×8, since it is too hard to

infer the extra information needed to upscale an image to such a high resolution. The

issue of degradation in extreme SR tasks can be more critical if there are not enough

refinement layers after the upsampling process. Recent methods [28, 14] also can suffer

from this problem since they upsample the input image at the end of the network.

The difficulty of training for the extreme SR cases comes from the issue of instability

in training. This phenomenon occurs when the upsampling is performed at the end of

the network, which is a common network design choice that most of the recent methods

adopt. This gives rise to the sudden shock to the model when an image comes to the

refinement block. Furthermore, the overall quality of the SR image can be degraded since

not enough refining process is applied after the upsampling. Especially, the quality issue

is more striking when performing extreme SR cases.

To alleviate the difficulty of training a deep convolutional network, one can train a

model by a layer-wise training approach. For example, VGGNet [66] first trains a smaller

convolutional network and gradually increases the depth of the network to avoid instability

of the training. Another approach is adding the auxiliary classifier at the middle of the

network to help the information flow of the earlier layer [67]. However, training a very

deep network is still an unsolved and challenging problem.

In this chapter, we study how the progressive training learning approach [68] can benefit

from the extreme image super-resolution task. Our primary scheme is a training method

for extreme SR cases, where we generate a relatively low-resolution output at first, and

then progressively increase the output resolution by adding an extra network to our model.

This scheme alleviates the instability of training since it can reduce the sudden size change

of the model by gradually upsampling the image at the middle of the network. Moreover,

the quality degradation issue is reduced by the same mechanism that the instability issue

is solved. The instability issue caused by training deep convolutional networks can also be

solved by our proposed model. This is because progressive learning works as a fine-tuning

of the pre-trained network. Last but not least, the progressive training approach benefits

the model efficiency on extreme image super-resolution task. With this concept, we can
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Figure 3.1: Illustration of progressive training for the extreme SR task. The

number that is denoted in each layer name means the stage number in which the cor-

responding module is added. For instance, CARN 2 denotes the CARN module that is

added in stage two.

achieve high performance even without an early-upsample or deeper network so that this

help to search a good balance between the high-performance and the lightweightness.

3.2 Background

Progressive training. To further improve the quality of generated high-resolution im-

age, many methods [69, 70, 68] apply a progressive generation scheme to a generative

model, which is usually a generative adversarial network [25]. The LapGAN [69] uses

a laplacian pyramid [71] so that the model generates the sub-band residual instead of

a natural image. During the reconstruction phase, the model reconstructs the natural

image by combining the generated residual image and upsampled input LR image. Stack-

GAN [70] generates photo-realistic high-resolution images conditioned on text descriptions

via sketch-refinement. This method uses a two-stage training procedure which sketches

the coarse structure of the objects in the first stage and generates the high-resolution

image from the intermediary image in the second stage. To generate very high-resolution

images such as 1024× 1024 resolution, Karras et al., [68] proposed a progressive training

methodology for generative adversarial networks. The way progressive training works is
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that it starts from a low-resolution input and then gradually adds new layers to the model.

This makes training the model much easier than the direct learning approach.

Progressive training in SR. Yet, only a few deep learning based SR algorithms apply

the progressive approach. Among them, the most successful one is LapSRN [56, 72].

Similarly to the LapGAN, LapSRN uses Laplacian pyramids when restoring images. To

this end, from the LR input image, the model progressively increases the image resolution

and generates a series of sub-band residual images. The output residual images and the

upsampled LR input are combined to produce the final SR image in the reconstruction

phase. To further decrease a model size, they share the weights of the component between

the multi-level pyramids [72].

3.3 Approach

In this section, we describe the methodology of the proposed progressive method that

uses progressive learning based on CARN. Any deep learning-based SISR model can be a

backbone network of the progressive approach, but we select CARN because it achieves a

good balance between efficiency and performance as we discussed in Chapter 2.

3.3.1 Progressive Cascading Residual Network.

We propose to build our model based on the CARN architecture and progressive learn-

ing scheme [68] to effectively reconstruct extremely low-resolution images. The key concept

of the methodology is similar to that of Karras et al. [68], but we adapt this scheme for

our SR task as shown in Figure 3.1. In detail, we set the number of stages as three in the

×8 scale SR task. That is, in each stage, the model performs ×8 → ×4, ×8 → ×2, and

×8→ HR tasks sequentially.

The training starts from stage one, which produces the ×4 scale image from the first

CARN module and the corresponding reconstruction block named toRGB 1, as shown

in Figure 3.1. The toRGB block is a convolution layer that refines the details of the
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Algorithm 1: Overall training process

Input: Batch of LR and HR images (ILR, IHR),
# of stages N , initial learning rate γ

Output: Trained model S(ILR;WS)
Γ← {γ}
S ← {f(Wc)} // initial convolution layer
for i← 1 to N do

S ← S ∪ {M i
(
W i
M

)
}

Γ← Γ ∪ {γ}
Attach toRGB i layer to S
ISR ← S(ILR;WS)
Update WS with (ISR, IHR) by corresponding Γ
if i < N then

Detach toRGB i layer from S
end
// decay the learning rates of previous modules
Γ← 0.1× Γ

end

upsampled image. After the end of the first stage, we add extra CARN modules to the

model and replace the previous reconstruction block with the one that produces the image

in double resolution. This training procedure iterates until it reaches the last stage. The

output of the final stage is an SR image of the same size as the HR image. The overall

training process is shown in Algorithm 1. Note that we use a set-like representation S for

the neural network we build and Γ for the set of learning rates.

To further stabilize progressive training, we reduce the learning rate of pre-trained

modules ten times. This is a simpler approach than smooth network transition [68], but

it also makes the training process stable. The idea behind it is the same as fine-tuning

a pre-trained network. However, we found that freezing the pre-trained modules would

degrade the overall quality since the information that had to be propagated to earlier

blocks could not flow properly.
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3.3.2 Why Progressive Training Works?

Applying the progressive training to any SR network alleviates the instability of the

training problem. This issue comes up when SR tasks are performed using deep architec-

tures, where the final upsampling is usually done abruptly towards the end of the network.

This can cause the network’s capacity unable to catch up with the sudden increase of the

image being processed. In this case, the overall performance might become unstable. On

the other hand, the progressive training scheme alleviates this problem by introducing

gradual increases in the image resolution.

In terms of the computation cost, using progressive training is also derives a beneficial

impact. In case we use a heavier network to avoid the instability of training, this may

cause a huge burden of computation. Taking an early-upsample approach may effective to

mitigate the unstable training, but this also makes the latency of the entire framework too

enlarged, which is not suitable for many applications. The progressive training, however,

provides a golden balance between two strategies: alleviate the instability by gradual

upsampling without a substantial number of layers. We will discuss the results and model

analysis of our approach in Section 3.4.2 and 3.4.3.

3.4 Experiment

3.4.1 Experimental Setting

Dataset. We use the same training and test datasets as described in Chapter 2 except

for the image downsample scale. Since the method represented in this chapter tackles the

extreme super-resolution task, we downsample the images ×8 scale with Bicubic kernel.

Implementation and training details. We set B = 4 and U = 8 for all the CARN

modules and removed the final convolution layer after the upsampling block since the

model produces RGB images at once at the end of the networks (e.g., at the toRGB module

in Figure 3.1). For the inputs, we use RGB LR images whose patches are of size 48× 48
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for training. We sample the LR patches randomly and augment them with a random

horizontal flip and four 90 degree rotations. We use three-stage progressive training for

×8 scale SR task by setting the batch size 32, 8, and 2 for 1.5×105, 2.0×105, and 3×105

steps, respectively. We train our models with the ADAM optimizer [73] with 10−4 as the

default learning rate. As described above, we decrease the learning rate of the pre-trained

modules by ten times for the training stability.

To boost the performance, we additionally apply geometric self-ensemble [14]. To do

this, we flip and rotate LR images to make eight augmented image. Then, we generate SR

images from the augmented ones and average these after recovering the original geometry

by inverse transformation function. Despite not requiring any extra models, the perfor-

mance gain is comparable to the inter-model ensemble method. From now on, we add the

+ symbol to the name of a model to denote the self-ensemble version.

3.4.2 Performance Analysis

To investigate the performance behavior of the proposed method, we analyze the pro-

gressive training via an ablation study. Table 3.1 presents the ablation study on the effect

of progressive learning. Here, CARN-B3U3 is the default setting of the original model

and CARN-B24U4 is the enlarged version of CARN to match the number of network

parameters (9.46 million) to the proposed one. This model has 24 cascading blocks and

each block has four residual units. Overall, the total number of parameters is the same

as that of the progressive CARN, which consists of three B8U4 CARN body modules.

Besides, we also show the result of the EDSR [14] to see 1) how progressive training can

effectively handle the instability that happens when training a very deep network, and 2)

how our approach enhances the model efficiency in terms of both network parameters and

the number of operations by preventing to use of excessive capacities.

The CARN-B24U4 outperforms CARN-B3U3 since it has almost eight times more pa-

rameters than the latter. The proposed progressive CARN outperforms CARN-B24U4

with a large margin with a similar number of parameters and the progressive model

achieves better performance than EDSR as well. The performance gap between the non-
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Table 3.1: Ablation study of the progressive CARN. We evaluate the number of

parameters, running time, and the performance on DIV2K validation dataset ×8 scale.

The CARN is the baseline model presented in Chapter 2, and CARN-B24U4 is the enlarged

version to match parameters to the progressive CARN. The progressive CARN+ is the

model with geometric self-ensemble.

Model # Params. MultAdds DIV2K valid

CARN-B3U3 1.25M 130G 25.28
CARN-B24U4 9.46M 395G 25.36
EDSR [14] 45.45M 2,862G 25.47
progressive CARN 9.46M 2,144G 25.53
progressive CARN+ 9.46M 2,144G 25.64

progressive and progressive methods can be attributed to the gradual upsampling manner

that alleviates the training instability. For example, CARN-B24U4 and the progressive

CARN have nearly identical model sizes, yet the latter outperforms the former. So we can

see that having a similar model size does not guarantee similar performance.

We claim that the progressive scheme resulted in an effect that resembles layer-wise

training of a deep network. In our case, each intermediary layer receives training signals

in the form of LR images. By learning to enlarge the given image to an intermediary-sized

image, the progressive model can overcome the performance gap. In addition to the high

performance, our model enjoys a better model efficiency compared to the EDSR model.

As shown in Table 3.1, progressive CARN uses only 20% of the parameters (45.45M vs.

9.46M) and 75% of the operations used by EDSR (2,862G vs. 2,144G MultAdds), while

achieving the superior performance.

The model with self-ensemble also shows a performance gain compared to the one

without it. The running time is slower than the without-ensemble version since it cannot

be run in parallel to avoid the out-of-memory issue. However, it can be used in many

situations since it does not require any extra models when performing ensemble. Also, the

running time can be significantly reduced when we run the models in parallel.
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Table 3.2: Quantitative comparison of deep learning-based SR methods. We

evaluate PSNR / SSIM for scaling factor of ×8 on the public benchmark datasets. The

two rightmost columns are our methods, and progressive CARN+ denotes the geometric

self-ensemble version of progressive CARN. The red text indicates the best performance

and blue indicates the second best.

Dataset Bicubic LapSRN [56] CARN EDSR [14]
Progressive

CARN
Progressive

CARN+

Set5 24.40/0.658 26.15/0.738 26.72/0.766 27.09/0.781 27.17/0.782 27.28/0.786
Set14 23.10/0.566 24.35/0.620 24.83/0.635 24.96/0.643 25.04/0.644 25.16/0.647
B100 23.67/0.548 24.54/0.586 24.72/0.591 24.81/0.599 24.87/0.600 24.92/0.601
U100 20.74/0.516 21.81/0.581 22.25/0.604 22.55/0.624 22.62/0.626 22.78/0.631

3.4.3 Comparison with State-of-the-art Methods

We compare the proposed model with previous state-of-the-art SR methods [56, 14]

on two commonly used image quality metrics: PSNR and the structural similarity index

(SSIM) [36]. Table 3.2 shows the quantitative comparisons of the performances for ×8

scale SR over the Set5, Set14, B100, and Urban100 datasets. Here, our proposed pro-

gressive CARN outperforms all methods with a large margin over all the datasets. Most

of the previous algorithms tend to suffer from the instability problem during training.

As mentioned above, this is because the LR images do not have sufficient information to

recover, so that upsampling the LR image abruptly can fail to reconstruct the SR image.

In addition, our method also shows better performance compared to the progressive up-

sampling approaches [56]. This advantage can be achieved by progressive training which

mitigates the instability of training. Furthermore, the progressive CARN+ achieves even

better performance. These observation can also be found in the visual qualitative com-

parison. As shown in Figure 3.2, our model works better than the others and accurately

reconstructs not only stripes and line patterns, but also complex objects such as alphabet

type, as depicted in ppt3 image from the Set14 dataset.

We also visually illustrate the qualitative comparisons among the CARN models and

our proposed ones. Somewhat surprisingly, we often observe the degradation issues of

the CARN-B24U4, especially for the complex patterns or objects. The images 0821 and

0831 from the DIV2K show the degradation problems that CARN-B24U4 experiences.
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However, our proposed method shows a better quality than the the others since it can be

trained more stably with a progressive learning scheme.

3.5 Discussion

In Chapter 3, we proposed a progressive cascading residual network that can perform

SISR accurately even in an extreme low-resolution scenario. The main idea behind our

work is to apply a progressive learning scheme to cascading residual networks. By using

the progressive scheme, the training process becomes much easier and more stable, since

the model first learns the coarse structure and gradually learns how to restore details in

the later stages. In addition, such progressive scheme let the model to achieve a good

balance between the high-performance and the efficiency compared to the very deep non-

progressive SR networks such as EDSR [14].
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ppt3 from Set14

HR 
(PSNR/SSIM)

Bicubic 
(21.69 / 0.5837)

LapSRN 
(20.39 / 0.783)

CARN 
(21.14 / 0.821)

EDSR 
(21.35 / 0.837)

Progressive CARN+ 
(21.82 / 0.848)

253027 from B100

HR 
(PSNR/SSIM)

Bicubic 
(19.50 / 0.492)

LapSRN 
(19.95 / 0.523)

CARN 
(19.94 / 0.526)

EDSR 
(19.84 / 0.529)

Progressive CARN+ 
(20.06 / 0.537

image023 from Urban100

HR 
(PSNR/SSIM)

Bicubic 
(22.16 / 0.612)

LapSRN 
(23.22 / 0.700)

CARN 
(23.84 / 0.715)

EDSR 
(24.10 / 0.726)

Progressive CARN 
(24.30 / 0.734)

Figure 3.2: Qualitative comparison on extreme (×8 scale) SR datasets.
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Chapter 4

Data Augmentation for Low-level Vision

Data augmentation is an effective way to improve the performance of deep networks.

Unfortunately, current methods are mostly developed for high-level vision tasks (e.g.,

image classification) and few are studied for low-level (e.g., image restoration). In this

chapter, we provide a comprehensive analysis of the existing data augmentations in the

frequency domain. We find that the methods that largely manipulate the spatial infor-

mation can hinder the image restoration process and hurt the performance. Based on

our analyses, we propose CutBlur and mixture-of-augmentation (MoA). CutBlur cuts a

low-quality patch and pastes it to the corresponding high-quality image region, or vice

versa. The key intuition is to provide enough DA effect while it keeps the pixel distribu-

tion intact. This characteristic of CutBlur enables a model to learn not only “how” but

also “where” to reconstruct an image. Eventually, the model understands “how much”

to restore given pixels, which allows it to generalize better to unseen data distributions.

We further improve the restoration performance by MoA that incorporates the curated

list of data augmentations. We demonstrate the effectiveness of our methods by conduct-

ing extensive experiments on several low-level vision tasks on both single or mixture of

distortion tasks. Our results show that CutBlur and MoA consistently and significantly

improve the performance especially when the model size is big and the data is collected

under real-world environments.
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4.1 Overview

Data augmentation (DA) is one of the most practical ways to enhance model perfor-

mance without additional computation cost in the test phase. While various DA meth-

ods [74, 4, 3] have been proposed in several high-level vision tasks, DA in low-level vision

has been scarcely investigated. Instead, many image restoration studies, such as super-

resolution (SR), have relied on the synthetic datasets [1, 75, 76] that can easily increase

the number of training samples by simulating the system degradation functions (e.g., using

the bicubic kernel for SR). However, because of the gap between the simulated and real

data distribution, models that are trained on synthetic datasets do not exhibit optimal

performance in the real environments [77]. Several recent studies have proposed to mit-

igate this discrepancy by collecting real-world datasets [78, 77, 79]. Still, in many cases,

it is often very time-consuming and expensive to obtain a large number of data that are

aligned and paired well. Although this is where DA can play an important role, only a

handful of studies have been performed in low-level vision tasks [80, 81].

Radu et.al., [81] was the first to study various techniques to improve the performance

of SR, one of which was data augmentation. Using rotation and flipping, they reported

consistent improvements across models and datasets. However, they only studied simple

geometric manipulations with traditional SR models [82, 83] and a very shallow neural

network model, SRCNN [1]. To the best of our knowledge, Feng et.al., [80] is the only

work that analyzed a recent DA method (Mixup [3]) in the example-based SISR problem.

Nonetheless, the authors provided only a limited observation using a single U-Net-like

architecture and tested the method with a single dataset, RealSR [77]).

To fill this hole and to better understand the effect of DA methods focusing on low-level

vision tasks, a series of analyses are conducted on various models and datasets (Section

4.4). We first categorize the existing augmentation techniques into two groups depending

on where the method is applied; pixel-domain [74, 4, 3] and feature-domain [84, 85, 86, 87].

We find that some DA methods harm the image restoration and even hamper the training

procedure when directly applied without considering the characteristics of the underlying
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task. The performance drop is more noticeable especially when a method largely induces

the loss or confusion of spatial information between nearby pixels (e.g., Cutout [74] and

feature-domain methods). Interestingly, it turns out that basic manipulations like RGB

permutation, which do not cause a spatial distortion, provide better improvements than

the ones which induce unrealistic patterns or a sharp transition of the structure (e.g.,

Mixup [3] and CutMix [4]). Our investigation in the frequency domain further reveals

that the existing DA methods introduce unwanted changes to the frequency profile of an

image, which makes the model hard to learn the intended restoration task.

Based on our analyses, we propose CutBlur, a new augmentation method that is specifi-

cally designed for low-level vision tasks. CutBlur cuts and pastes a low quality (LQ) image

patch into its corresponding ground-truth high quality (HQ) image patch (Figure 4.1). By

having partially LQ and HQ pixel distributions with a random ratio in a single image, it

enjoys the regularization effect that encourages a model to learn both “how” and “where”

to resolve the image. One nice side-effect is that the model naturally learns “how much”

to restore given pixels—it learns to adaptively restore every local part of an image.

Thanks to this unique property, CutBlur helps the network to generalize better on

an unseen pixel distribution and prevents over-correcting it (e.g., over-sharpening in SR

and over-smoothing in denoising), which can commonly happen in real-world applications

(Section 4.5). This is again clearly seen in the frequency domain analysis, which shows

that CutBlur does not alter or add spurious effect on the frequency profile of an image. In

addition, we show that the performance can be further boosted by applying several curated

DA methods together during the training phase, which we call mixture-of-augmentation

(Section 4.3.1). Our experiments demonstrate that the proposed strategy significantly and

consistently improves the model performance over various models and datasets.

4.2 Background

Data augmentation in pixel space. Beyond a simple geometric transformation such

as the image flipping and rotation, many advanced DA methods have been proposed to
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(a) HQ (b) LQ (c) CutBlur (d) Schematic illustration of CutBlur

(e) Blend (f) RGB perm. (g) Cutout [74] (h) Mixup [3] (i) CutMix [4] (j) CutMixup

Figure 4.1: Overview of the data augmentation methods. An illustrative example

of our proposed method, CutBlur (Top). CutBlur generates an augmented image by

cut-and-pasting the low-quality input image onto the ground-truth high-quality image

region and vice versa (Section 4.3.1). Illustrative examples of the existing augmentation

techniques and a new variation of CutMix and Mixup, CutMixup (Bottom).

manipulate the pixel space of an input image [74, 4, 3, 88, 89, 90]. Mixup [3] interpolates

two images to generate unseen training samples. A regional dropout strategy [74, 88], such

as Cutout, erases the random region of the image to enhance the generalization ability of

the model. Integrating the advantages of both Cutout and Mixup approaches, CutMix [4]

replaces the random region with the other image instead of removing it. This enables

the model to fully exploit the entire training data, in contrast to the regional dropout.

Recently, some studies have focused on developing an effective way (or framework) of

applying DA methods. For example, AutoAugment [89] and its variant [90] have proposed

to learn an augmentation policy for a given task and dataset.

Data augmentation in feature space. Instead of directly working on pixels, DA

methods in this category manipulate the internal features of the network [91, 85, 84, 92,

86, 87]. They are categorized into three groups: 1) feature mixing, 2) shaking, and 3)

dropping. Manifold Mixup [86] blends the latent features as well as the input image to

provide a smoother decision boundary. Shake-shake [85] and ShakeDrop [87] perform a

stochastic affine transformation to the features so as to give a stronger regularization effect.
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Similarly, feature dropping strategies [84, 93] boost the generalization ability by erasing

some regions of the feature.

Data augmentation for low-level vision task. Despite its huge success in high-level

vision tasks, the effect of the DA has not been actively investigated in the low-level vision

tasks. To the best of our knowledge, Feng et.al., [80] is the only work that applied a

DA method beyond a geometric transformation to a low-level vision task. They utilized

Mixup [3] to train the model on a very small dataset. However, their scope is limited to

reducing the overfitting issue of a specific super-resolution model and dataset. In contrast,

our work provides a comprehensive analysis of various DA methods, covering various

models, datasets, and environments. Recently, Helou et.al., have proposed an interesting

work that masks the frequency components of an input image during training [94]. This

stochastic frequency masking (SFM) framework simulates the arbitrary blur kernel in the

SR task and showed a promising regularization effect on the kernel-overfitting issue that

prevails in the modern deep SR models. Although it is not originally proposed as a DA

method, we find that, in principle, SFM provides an augmentation effect by perturbing

the frequency information. However, SFM needs a pre-processing step in the frequency

domain using discrete cosine transforms, which also introduces some hyper-parameters

to select a central frequency band. Besides, their results are only restricted to super-

resolution and denoising. By contrast, CutBlur works on the image domain with a simple

cut-and-paste operation while enjoying similar advantages.

4.3 Approach

We describe CutBlur (Section 4.3.1) and mixture-of-augmentation (Section 4.3.2), a

new augmentation method and a general framework for low-level vision tasks. Finally, we

describe the experimental settings we used throughout this chapter (Section 4.3.3).
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4.3.1 CutBlur

Let xLQ ∈ RW×H×C and xHQ ∈ RsW×sH×C be low- and high-quality image patches,

respectively. Here, s denotes a scale factor that depends on the task of interest; s =

1 in many low-level vision tasks (e.g., image denoising), while s > 1 in SR. Because

CutBlur requires the same resolution of xLQ and xHQ, we first match the size by using a

deterministic kernel if necessary; xsLQ. The goal of CutBlur is to generate a pair of new

training samples (x̂HQ→LQ, x̂LQ→HQ) by cut-and-pasting the random region of xHQ into

the corresponding xsLQ and vice versa:

x̂HQ→LQ = M� xHQ + (1−M)� xsLQ,

x̂LQ→HQ = M� xsLQ + (1−M)� xHQ,
(4.1)

where M ∈ {0, 1}sW×sH denotes a binary mask indicating where to replace, 1 is a binary

mask filled with ones, and � is an element-wise multiplication. For sampling the mask

and its coordinates, we follow the original CutMix [4].

4.3.2 Mixture-of-Augmentation

To maximize the advantages of using DA, we integrate various DA methods (presented

in Figure 4.1) into a single framework, which we call a mixture-of-augmentation (MoA)

strategy. For each training step, it first determines whether to apply DA or not with

decision probability p. When deciding to perform DA, it randomly selects a single method

among the pool following the ratio vector r = {r1, ..., rk}, where k is the number of DAs

we use. By default, we set p as 1.0 and sample r from the uniform distribution.

4.3.3 Experimental Setting

We apply our method to the various low-level vision tasks using synthetic and realistic

data with single or multiple distortions.
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Task and datasets. For image super-resolution task, we generate a synthetic SR dataset

by downsampling the HQ image with a bicubic kernel. We use images from the DIV2K [44]

as a high-quality. For evaluation, Set5 [45], Set14 [95], B100 [47], Urban100 [48], and

Manga109 [65] datasets are used. To test realistic SR scenarios, we train and benchmark

the model on RealSR (version 1) [77] and CameraSR [96] datasets.

On single distortion restoration tasks, we perform widely used image restoration tasks:

image denoising and JPEG artifacts removal. We distort HQ images from DIV2K [44]

to generate the dataset for synthetic denoising and JPEG artifacts removal tasks. Model

evaluations are done using Kodak24 and Urban100 [48] for denoising, and Classic5 [97]

and LIVE1 [98] datasets for JPEG artifacts removal task, respectively. In addition to the

synthetic cases, we perform an experiment on a real denoising task using SIDD [78]. For

preparing the dataset, we follow Abdelhamed et.al., [99] and denote this as SIDD+.

In the real world, images can be corrupted with multiple distortions. To simulate this

scenario, we follow the recently proposed multi-distortion environments. To generate a

mixed distortion dataset [8], a sequence of Gaussian blur, noise, and JPEG compression is

applied to DIV2K HQ images with random levels. This provides three groups of datasets

by the distortion intensity (mild, moderate, and severe). Among them, we train the

model on a moderate level and test it to all levels to verify the generalization ability.

In addition, we also experiment on the multi-degradation SR task [100, 101]. Unlike a

standard bicubic SR, this adds a Gaussian blur or noise to mimic the image acquired from

the real environment. Specifically, we use two settings: SR+DN and SR+BLUR.

Baselines. To benchmark on super-resolution task, we use four models: SRCNN [1],

CARN [102], RCAN [2], and EDSR [76], which have different numbers of parameters

from 0.07M to 43.2M (million). When training the models on a synthetic SR dataset, we

follow the training protocol of the prior work [76]. That is, the network is pre-trained

with ×2 scale, then fine-tuned on ×4 scale dataset. Since we upsample the input image

xLQ ∈ RW×H×C to xsLQ ∈ RsW×sH×C (as described in Section 4.3.1), we attach desubpixel

layer [103] before the first layer for efficient inference. In addition, we change the number

of input channels in the first layer from C to s2C. We observe that such modifications do
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not harm the SR performance as well as the model efficiency.

In general image restoration task except super-resolution, EDSR [76], RDN [101], and

RNAN [104] are used for other low-level vision tasks. The number of parameters of these

models ranges from 9.0M to 38.4M. For EDSR, we remove the upsampling blocks of the

model to apply it to image restoration tasks that do not involve upscaling.

Evaluation metrics. We evaluate the methods using the peak signal-to-noise ratio

(PSNR) and the structural similarity index (SSIM) [49]. PSNR is calculated by the mean-

squared error between the two images in the log-space. SSIM [49] measures the similarity

of the images based on the luminance, contrast, and structure using the statistics of the

given images. Note that we use the Y channel only when calculating metrics on SR and

JPEG artifact removal tasks, while using full-RGB channels otherwise.

Augmentation setup. We describe detailed descriptions and settings of every aug-

mentation in Table 4.1. Here, CutMixup, CutBlur, and MoA are the strategies that we

have newly proposed in this chapter. In addition, to the best of our knowledge, we

are the first to use RGB permutation and Blend as augmentation methods for low-level

vision tasks. The hyper-parameters are described following the original papers’ nota-

tions. Depending on the task and dataset, we use different MoA decision probability p

and ratio vector r = {r1, ..., rk}. We set p = 1.0 for super-resolution and p = 0.6 for

the rest of restoration tasks. Exceptionally, we use p = 0.2 when training SRCNN and

CARN on the synthetic SR dataset considering the small capacity of these networks i.e.,

MoA is applied less. When using MoA, the model takes a single augmentation from

the pool. By default, we sample r from the uniform distribution except for the realis-

tic SR task (e.g., CameraSR and RealSR). For realistic SR task, we adjust the ratio r

to have CutBlur 40% chance more than the other DA’s, each of which has 10% chance

(40% + 10% + 10% + 10% + 10% + 10% + 10% = 100%).
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Table 4.1: A description of data augmentations used in MoA.

Name Description Default α

Cutout [74] Erase randomly sampled pixels with probability α. Cutout-ed pixels
are discarded when calculating loss by masking removed pixels.

0.001

CutMix [4] Replace randomly selected region to sub-patch from other image.
The coordinates are rx = Unif(0,W ), rw = λW , where λ ∼
N(α, 0.01) (same for ry and rh).

0.7

Mixup [3] Blend randomly selected two images. We use default setting of Feng
et al., [80] which is: I ′ = λIi + (1− λ)Ij , where λ ∼ Beta(α, α).

1.2

CutMixup CutMix with the Mixup-ed image. CutMix and Mixup procedure
use hyper-parameter α1 and α2 respectively.

0.7/1.2

RGB perm. Randomly permute RGB channels. -

Blend Blend image with vector v = (v1, v2, v3) , where vi ∼ Unif(α, 1). 0.6

CutBlur Perform CutMix with same image but different resolution, produc-
ing x̂HQ→LQ and x̂LQ→HQ. Randomly choose x̂ from the [x̂HQ→LQ,
x̂LQ→HQ], then provided selected one as input of the network.

0.7

MoA Use all data augmentations described above. Randomly select single
augmentation from the augmentation pool then apply it.

-

4.4 Comprehensive Analysis of Data Augmentation

In this section, we investigate existing DA methods and why they fail in low-level

vision tasks (Section 4.4.1). Based on these observations, we analyze the characteristics

of our methods (Section 4.4.2, 4.4.3) and show its effectiveness under various conditions

(Section 4.4.4). Here, for a concise explanation, we confine our scope of applications to

SR. However, we later show that these results are also extended well to other low-level

vision tasks such as denoising, JPEG artifact removal, and resolving mixed distortions.

4.4.1 Problems with Existing Data Augmentations

The core idea of many augmentation methods is to partially block or confuse training

signals so that a model acquires more generalization power [74, 4]. However, unlike the

high-level tasks (e.g., classification) where a model should learn to abstract an image, the

local and global relationships among pixels are essential in low-level vision tasks (e.g., de-

noising and super-resolution). With this characteristic, we hypothesize that an operation
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Table 4.2: Quantitative comparison (PSNR) of data augmentations in SR. We

report the performance gap (δ) of the baseline performance w/ and w/o augmentation on

DIV2K (×4) [44] and RealSR (×4) [77] datasets. The dashed line separates the existing

DA methods with a set of DA methods that we newly proposed for low-level vision tasks.

Method DIV2K (δ) RealSR (δ)

EDSR [76] 29.21 (+0.00) 28.89 (+0.00)

Cutout [74] (0.1%) 29.22 (+0.01) 28.95 (+0.06)
CutMix [4] 29.22 (+0.01) 28.89 (+0.00)
Mixup [3] 29.26 (+0.05) 28.98 (+0.09)
CutMixup 29.27 (+0.06) 29.03 (+0.14)
RGB perm. 29.30 (+0.09) 29.02 (+0.13)
Blend 29.23 (+0.02) 29.03 (+0.14)

CutBlur 29.26 (+0.05) 29.12 (+0.23)
Mixture-of-Augmentation (MoA) 29.30 (+0.09) 29.16 (+0.27)

that severely perturbs spatial information limits model’s ability to restore an image.

Indeed, DA methods that severely drop or manipulate spatial information give detri-

mental effects to the SR performance especially when they work in the feature space [91,

84, 93]—every feature augmentation method significantly decreases the performance. To

reveal this, we apply feature augmentations [86, 87] to EDSR [76] and RCAN [2] (Figure

4.2). Both Manifold Mixup [86] and ShakeDrop [87] result in inferior performance than

the baseline. Specifically, RCAN fails to learn when using any feature-based augmenta-

tion. For EDSR, Manifold Mixup is the only one that can be accompanied with, but it

also shows a significant performance drop. We hypothesis that the main reason for the

catastrophic failure of ShakeDrop is due to its severe manipulation of training signals.

On the other hand, DA methods in pixel space bring some improvements when applied

carefully (Table 4.2)1. For example, Cutout [74] with default setting drops 25% of pixels in

a rectangular shape, and this significantly degrades the performance by 0.1 dB. However,

when applied with a 0.1% ratio and erasing random pixels instead of a rectangular region,

we find that Cutout gives a positive effect (DIV2K: +0.01 dB and RealSR: +0.06 dB).

Note that this drops only 2∼3 pixels when using a 48×48 input patch.

1For every experiment, we only used geometric DA methods, flip and rotation. Here, to solely analyze
the effect of the DA methods, we did not use the ×2 pre-trained model.
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Figure 4.2: Training curve comparison of feature space DAs. MM and SD denote the

model with Manifold Mixup [86] and ShakeDrop [87], respectively.

CutMix [4] shows a marginally better performance than Cutout but less than Mixup [3]

(Table 4.2). We hypothesize that this happens because CutMix can use more information

than Cutout, while it still generates a drastically sharp transition of image context making

boundaries. Mixup avoids this abrupt change by mingling the context of two different

images, but at the same time this confuses the SR model by introducing an unnatural

pixel distribution. To alleviate these issues, we create a variation of CutMix and Mixup,

which we call CutMixup. Interestingly, it gives a better improvement over the others.

By getting the best of both methods, CutMixup benefits from minimizing the boundary

effect as well as the ratio of the unnatural mixed contexts. Based on these observations,

we further test a set of basic operations such as RGB permutation and Blend (adding a

constant value to an entire image) that do not incur any structural change of an image.

Surprisingly, we observe that these simple methods show promising results in the synthetic

DIV2K dataset and a big improvement in RealSR that is considered to be more challenging.

To investigate this more systematically, we analyze the effect of each DA method in

the frequency domain (Figure 4.3). To visualize the distribution of frequency content in

an image, we use the power spectral density (PSD). The PSD of an image is typically

modeled as 1/fα, which is visible in the profile of the original (unaugmented) image (light

green). Here, f is the spatial frequency and α ∈ [1, 2] varies depending on the scene

(natural vs. man-made). Due to the sharp boundary at the cutting edge and the loss
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Figure 4.3: Power spectral density (PSD) of augmented images The PSD of the

original image (light green) is compared to the PSD of its augmented versions; Cutout

(red), Mixup (blue), and CutBlur (dotted dark green). While the PSD of CutBlurred

image does not largely perturb the image profile, the other methods cause either changed

envelopes (Mixup) or a sudden jump (Cutout).

of information, Cutout introduces a sudden jump in the frequency profile with spuriously

enhanced high-frequency responses. Mixup significantly changes the PSD envelope in an

unnatural way due to the frequency components of the mixing image—note that this is a

log scale plot. It is unsurprising that such DA methods incur negative effects for low-level

vision tasks. These results naturally leads us to our new augmentation method, CutBlur.

4.4.2 CutBlur

Not only does CutBlur improve the performance (Table 4.2), but it also has several

unique and nice properties that cannot be obtained by other DA methods. In this section,

we provide a more detailed analysis focused on the properties of CutBlur.

Why CutBlur works for low-level vision tasks? In the previous analysis (Section

4.4.1), we found that sharp transitions or mixed image contents within an image patch, or

losing the relationships of pixels can degrade the performance of image restoration models.

Therefore, a good DA method for low-level vision tasks should not make unrealistic pat-

terns or information loss while maintaining a good regularization effect. CutBlur satisfies

this condition because it cuts and pastes between the pairs of LQ and HQ images of the
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Figure 4.4: Analysis of the generalization of the baseline w/ and w/o CutBlur. A

slightly higher resolution image is given at test time—the model is trained on x4 task, but

x2 task is given (the pixel denseness is doubled). The PSD (left) of reconstructed images

(right) are compared. When the network takes an unexpectedly higher pixel distribution

at test time (than it saw during training), the baseline model without CutBlur generalizes

poorly and shows various artifacts, while the one trained with CutBlur does not.

same content. By putting the LQ (resp. HQ) image patch onto the corresponding HQ

(resp. LQ) location, it can minimize the boundary effect, which majorly comes from a

mismatch between the image contents (e.g., Cutout and CutMix). Unlike Cutout, CutBlur

can utilize the entire image information while enjoying the regularization effect due to the

varied samples of random HQ pixel ratios and locations. This is also clearly seen in the

frequency domain analysis (Figure 4.3, dotted dark green). Unlike Mixup, CutBlur min-

imally hurts the pixel statistics (closely following the original profile) while maintaining

the augmentation effect with an immense enhancement of the performance (Table 4.2).

What does a model learn with CutBlur? We hypothesize that the performance en-

hancement of using CutBlur comes from constraining the SR model to adaptively restore

an image, which provides a beneficial regularization effect. More specifically, with Cut-

Blur, the model now has to simultaneously learn both “how” and “where” to super-resolve

an image. This naturally leads the model to learn “how much” it should super-resolve a

given pixel and thereby generalize better to unseen pixel distributions. Similar to label

smoothing [105] that prevents a classifier from making an over-confident decision, Cut-

Blur prevents the model from over-correcting an image.
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EDSR w/o CutBlur (Δ)

EDSR w/ CutBlur (Δ)LR (CutBlurred)
LR

HR

HR

Figure 4.5: Qualitative comparison of the baseline w/ and w/o CutBlur. ∆ is

the absolute residual intensity map between the network output and the ground-truth HR

image (top left). When the input is augmented by CutBlur (bottom left), unlike the

baseline (top right), CutBlur-model (bottom right) not only resolves the HR region

(red box) but also reduces ∆ of the other LR area (green box).

This can be demonstrated by testing some artificial setups such as giving a model an

unexpectedly higher resolution image (Figure 4.4) or a CutBlurred image (Figure 4.5)

at test time. In Figure 4.4, the frequency components of LR images lie mostly in low

frequencies (the purple line) compared to HR (the light green line). Hence, the goal

is to recover high-frequency information using the low-frequency of noisy and coarse-

scale signals. Without any specific treatment, when the SR model takes unexpected

higher resolution images at test time, it commonly outputs unnaturally over-sharpened

predictions especially where the edges are (the right panel of Figure 4.4). The PSD of the

baseline model (the red line) clearly shows this with the severely altered PSD envelope,

having several peaks in low and high-frequency components. This is a natural behavior

since the model learned to super-resolve every given pixel with a fixed scale, no matter

how the underlying distribution looks like. CutBlur resolves this issue by showing a mixed

pixel distribution to the model during the training phase. As it can be seen in both the
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reconstructed image and the PSD analysis, when CutBlur is applied (the blue line), the

model super-resolves the image (recovers high-frequency components) without introducing

serious artifacts (follows the original profile). Figure 4.5 also shows the nice generalization

effect of CutBlur. Here, CutBlur-model resolves the given image better than the baseline

model in both LR and HR regions. Note that the residual error of CutBlur-model is

significantly decreased in both regions. Although this may unfair to compare the models

that have been trained with and without such images, we argue that this scenario is

realistic; happened in the real-world very often (e.g., out-of-focus images). We will discuss

this more in detail in Section 4.5.

CutBlur vs. Giving HR inputs during training. To let a model learn the HR

pixel distribution, instead of using CutBlur, one can also think of showing HR images

to the model during training. With the EDSR model, CutBlur training showed better

performance in PSNR (29.04 dB) than näıvely providing the HR images (28.87 dB) to

the network. This is because our CutBlur framework includes the HR input scenario as a

special case, where M = 0 or 1. On the other hand, giving HR inputs can never simulate

the mixed distribution of LR and HR pixels in a single image so that the network can only

learn “how”, not “where” to super-resolve an image.

4.4.3 Mixture-of-Augmentation

Our analysis shows that, when applied wisely, many DA methods can bring benefits to

image restoration models. To get the most out of this observation, we propose mixture-

of-augmentation (MoA) that use the curated list of DA methods represented in Table 4.2.

With MoA, we achieve the best performance in both synthetic and realistic datasets (Table

4.2). Note that this set of DA methods is never exhaustive, and we believe that there is

more room for improvement with new augmentation methods. From now on, unless it is

specified, we report all the experimental results using MoA.
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Table 4.3: Analysis on various models and dataset volumes. We train the models

of various sizes on different volumes of DIV2K (×4) dataset. We report PSNR (dB) for

each setup w/ and w/o MoA.

Model Params.
Training Data Size

100% 50% 25% 15% 10%

SRCNN
0.1M

27.95 27.95 27.95 27.93 27.91
+ MoA -0.02 -0.01 -0.02 -0.02 -0.01

CARN
1.1M

28.80 28.77 28.72 28.67 28.60
+ MoA +0.00 +0.01 +0.02 +0.03 +0.04

RCAN
15.6M

29.22 29.06 29.01 28.90 28.82
+ MoA +0.08 +0.16 +0.11 +0.13 +0.14

EDSR
43.2M

29.21 29.10 28.97 28.87 28.77
+ MoA +0.08 +0.08 +0.10 +0.10 +0.11

4.4.4 Study on Different Models and Datasets

Various model sizes. It is generally known that a model with a larger capacity benefits

more from data augmentation than a small capacity model does. Here, we investigate

the relationship between the network size and the performance gain of using MoA to see

whether this belief is also valid in low-level vision tasks. In this experiment, we set the

decision probability p differently depending on the model size; p = 0.2 for small models

(SRCNN and CARN) and p = 1.0 for the large capacity networks (RCAN and EDSR).

When using a full dataset (100%), small models such as SRCNN and CARN do not benefit

much from data augmentation in PSNR (Table 4.3)—still, it is noteworthy that the benefit

of having CutBlur remains (e.g., suppressing over-sharpening). On the other hand, MoA

consistently improves the performance of RCAN (+0.08 dB) and EDSR (+0.08 dB), which

have enough capacity to exploit the augmented information.

Various dataset sizes. We further investigate the model performance while decreasing

the data size for training using 100%, 50%, 25%, 15% and 10% of the DIV2K dataset(Table

4.3). SRCNN and CARN show none or marginal improvements with our method. This is

due to a severe underfitting of small models as it can be also deduced from little differences

between the performance of SRCNN with 100% and 10% of the dataset. Here, the effect

of DA is minimal due to the lack of model capacity. On the other hand, as soon as the
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size of a model becomes moderate or big, our method brings a huge benefit in all the

settings. The performance gap becomes profound as the dataset size diminishes. With

MoA, RCAN trained on only half of the dataset recovers the same performance of using

100% of it (29.06+0.16 = 29.22 dB). Our method brings up to 0.16 dB improvement when

the dataset size is less than 50%, and this tendency is observed in EDSR as well. This

is a promising result because it is usually very hard to acquire a large dataset in many

potential real applications.

4.5 Result

In this section, we show the experimental results of our proposed method on diverse

low-level vision tasks including image super-resolution (Section 4.5.1), single distortion

restoration (Section 4.5.2: denoising and JPEG artifacts removal), and multiple distortions

restoration (Section 4.5.3: mixed artifacts, SR+DN, and SR+BLUR).

4.5.1 Image Super-resolution

Synthetic image super-resolution. In Table 4.4, we compare the performance of

the baseline methods on various synthetic benchmark datasets. MoA consistently brings

a huge performance gain especially when the models have large capacities. For example,

both networks get at least 0.15 dB PSNR gain on Urban100 and 0.20 dB on the Manga109

dataset. As we discussed in Section 4.4.3, even when it does not improve the final perfor-

mance, all the models enjoy the benefits of better generalization. Qualitative comparison

(Figure 4.6) also exhibits the superiority of our method. RCAN and EDSR benefit from

the increased performance and successfully resolve the aliasing artifacts (e.g., lines in the

first row) and the structural distortions (e.g., holes in the second row).

Realistic image super-resolution. We also demonstrate the benefits of using MoA on

real-world SR tasks (Table 4.5). For both RealSR and CameraSR datasets, we observe

that MoA successfully boosts the performance in all cases. With MoA, the models gain
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Table 4.4: Quantitative comparison on synthetic SR datasets (scale ×4).

Green/red colors indicate better/worse performance of using MoA than the baseline.

Model Params.
Bicubic SR

Set5 (δ) Set14 (δ) B100 (δ) Urban100 (δ) Manga109 (δ)

CARN
1.1M

32.00 / 0.8915 28.48 / 0.7787 27.51 / 0.7332 25.85 / 0.7779 30.17 / 0.9034
+ MoA 31.97 / 0.8912 28.48 / 0.7788 27.51 / 0.7332 25.85 / 0.7780 30.16 / 0.9032

RCAN
15.6M

32.50 / 0.8985 28.86 / 0.7879 27.76 / 0.7422 26.76 / 0.8062 31.24 / 0.9169
+ MoA 32.66 / 0.8998 28.92 / 0.7895 27.80 / 0.7436 26.93 / 0.8106 31.46 / 0.9190

EDSR
43.2M

32.50 / 0.8983 28.81 / 0.7871 27.72 / 0.7412 26.66/ 0.8038 31.06 / 0.9151
+ MoA 32.56 / 0.8990 28.88 / 0.7886 27.78 / 0.7430 26.80 / 0.8072 31.25 / 0.9163

CARN + MoA (Δ) 
(22.04/0.8148)

LQ 
(19.81/0.6517)

EDSR (Δ) 
(23.04/0.8492)

Urban100: 004

CARN (Δ) 
(21.97/0.8127)

HQ 
(PSNR/SSIM)

EDSR + MoA (Δ) 
(24.13/0.8687)

RCAN + MoA (Δ) 
(24.07/0.8704)

RCAN (Δ) 
(23.64/0.8658)

CARN + MoA (Δ) 
(22.08/0.6829)

LQ 
(20.64/0.5516)

EDSR (Δ) 
(22.30/0.7049)

B100: 021

CARN (Δ) 
(22.07/0.6826)

HQ 
(PSNR/SSIM)

EDSR + MoA (Δ) 
(22.38/0.7104)

RCAN + MoA (Δ) 
(22.39/0.7107)

RCAN (Δ) 
(22.27/0.7056)

Figure 4.6: Qualitative comparison on synthetic SR datasets. ∆ is the absolute

residual intensity map between the restored and the HQ image.

at most 0.27 dB in PSNR. Figure 4.7 displays the qualitative comparison. Compared to

the baselines, the networks utilizing MoA reconstruct the fine details better (e.g., lines in

the first row and windows in the second row).

Generalization. In addition to the performance improvement, MoA helps the model to

generalize better on various image conditions such as images taken from different devices

and unseen pixel resolutions. To test the generalization performance against different

devices, we perform a cross-examination using the CameraSR dataset (Table 4.6). In this

evaluation, training and test images are captured from different cameras (e.g., train on

Nikon and test on iPhone, and vice versa). Because of this train/test inconsistency, the
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Table 4.5: Quantitative comparison on realistic SR datasets. δ denotes the perfor-

mance gap between the model w/ and w/o MoA.

Model Params.
Realistic SR

RealSR (δ) CameraSR (δ)

CARN
1.1M

28.78(+0.00) / 0.8134 30.46(+0.00) / 0.8717
+ MoA 29.00(+0.22) / 0.8204 30.50(+0.04) / 0.8728

RCAN
15.6M

29.22(+0.00) / 0.8254 30.54(+0.00) / 0.8745
+ MoA 29.49(+0.27) / 0.8307 30.79(+0.25) / 0.8780

EDSR
43.2M

28.89(+0.00) / 0.8204 30.53(+0.00) / 0.8742
+ MoA 29.16(+0.27) / 0.8258 30.64(+0.09) / 0.8762

CARN + MoA (Δ) 
(25.13/0.8578)

LQ 
(23.21/0.7865)

EDSR (Δ) 
(25.19/0.8575)

RealSR: Canon010

CARN (Δ) 
(24.69/0.8486)

HQ 
(PSNR/SSIM)

EDSR + MoA (Δ) 
(25.54/0.8673)

RCAN + MoA (Δ) 
(25.78/0.8693)

RCAN (Δ) 
(25.53/0.8669)

CARN + MoA (Δ) 
(32.16/0.8819)

LQ 
(30.21/0.8443)

EDSR (Δ) 
(32.26/0.8831)

CameraSR: Dubai

CARN (Δ) 
(32.11/0.8806)

HQ 
(PSNR/SSIM)

EDSR + MoA (Δ) 
(32.33/0.8848)

RCAN + MoA (Δ) 
(32.48/0.8859)

RCAN (Δ) 
(32.05/0.8807)

Figure 4.7: Qualitative comparison on realistic SR datasets. ∆ is the absolute

residual intensity map between the restored and the HQ image.

models are required to generalize on unseen distortions, which is more usual in the real-

world, where images are taken from various cameras containing device-dependent artifacts.

As shown in Table 4.6, the networks with MoA perform significantly better, gaining at

most 0.87 dB PSNR in Nikon→iPhone, and vice versa. Surprisingly, even though it is a

lightweight network, CARN with MoA is shown to be the best model in Nikon→iPhone,

and it outperforms other models without MoA.

Along with the rapid development of camera sensing module of the edge devices, various

types of images have become more popular, which were unavailable in the past without
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Table 4.6: Device generalization ability comparison. X→Y indicates that we use

images from a device X for training and device Y for testing.

Model Params.
CameraSR

Nikon→iPhone (δ) iPhone→Nikon (δ)

CARN
1.1M

22.61(+0.00) / 0.7525 27.86(+0.00) / 0.8138
+ MoA 23.33(+0.72) / 0.7702 28.26(+0.40) / 0.8189

RCAN
15.6M

22.04(+0.00) / 0.7379 27.86(+0.00) / 0.8131
+ MoA 22.91(+0.87) / 0.7621 28.56(+0.70) / 0.8255

EDSR
43.2M

22.28(+0.00) / 0.7596 28.11(+0.00) / 0.8189
+ MoA 23.02(+0.74) / 0.7675 28.63(+0.52) / 0.8265

using expensive auxiliary gadgets. One of the examples is an out-of-focus photography

that has recently become available with small devices (e.g., Portrait function in iPhone

11 Pro). To show the effectiveness of CutBlur in the real world, we test a model to

super-resolve an out-focused image that we captured by ourselves using iPhone 11 Pro

(Figure 4.8). For comparison, we generate LQ input by downsampling the original image

through Bicubic kernel (scale ×2). As shown in the figure, the baseline model (EDSR w/o

CutBlur) shows degraded performance especially in the focused foreground region—it adds

unrealistic textures in the grass. In contrast, CutBlur-model adequately super-resolves

both the foreground and background of the image.

4.5.2 Single Distortion Restoration

Synthetic distortion restoration. We compare the models on single distortion restora-

tion tasks: image denoising (color) and JPEG artifact removal. Here, σ and q denote the

noise level and the JPEG quality, respectively. Unlike the SR task, even with a big model,

MoA seems to influence the performance only marginally (aside from the other side ben-

efits). We conjecture that this result is related to the number of pixel information given

to networks. In other words, the effectiveness of DA is diminished due to the richer in-

formation. Note that, although we use the DIV2K dataset for both tasks, the total pixel

volume used for training is much larger in the restoration tasks than the SR task that

involves a downsampling operation. More specifically, the total number for the pixels of
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EDSR w/o CutBlur (Δ)

EDSR w/ CutBlur (Δ)

HQ

LQ (input)

Figure 4.8: Qualitative comparison on the real-world out-of-focus image. We

capture HQ image by iPhone 11 Pro and downsample (scale ×2) it using bicubic kernel

to generate LQ image. EDSR without CutBlur over-sharpens the focused region resulting

in unpleasant distortions while the CutBlur-model effectively super-resolves the image.

the denoising and JPEG artifact removal are 2.2B, while 0.1B for the SR (×4 scale).

Generalization. Still, the advantages of DA methods are not limited to improving per-

formance. To test the enhanced generalization ability of the models on unseen degradation

levels, we generate the train and test datasets with different σs and qs. Specifically, we use

severely corrupted images as the training dataset and mild distortion for the test dataset:

σ = 70 → 50 for denoising and q = 10 → 30 for JPEG artifact removal, respectively. We

would like to note that such train/test inconsistency is a practical scenario in real world

because images given in most real use-cases are distorted with an arbitrary and unknown

degradation level. For the JPEG artifact removal task, MoA effectively enhances all the

restoration models (Table 4.7). The performance is significantly increased by at most 1.02

dB and 0.0171 in PSNR and SSIM, respectively. On the other hand, for the denoising

task, MoA seems to negatively impact the model performance of RDN and RNAN in

PSNR. Interestingly, one can see that all the models show enhancements in SSIM. We

found that the higher PSNR of the baseline models is in fact due to the over-smoothing

phenomenon (Figure 4.9). Because the baselines have learned to remove a strong noise

(σ = 70), when the input has a mild noise (σ = 50), the models deliver over-smoothed
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Proposed 
(27.79 / 0.7885)

Baseline 
(28.81 / 0.7264)

High quality 
(PSNR / SSIM)

Low quality (σ=50) 
(28.41 / 0.1067)

Figure 4.9: Qualitative comparison of the generalization ability in the denoising

task. Both the baseline and the proposed method are trained using σ = 70 (severe) and

tested with σ = 50 (mild). Proposed method adequately restores the noise, while the

baseline over-smooths the input (resulting in high PSNR) with undesirable artifacts.
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Table 4.7: Quantitative comparison on synthetic distortion datasets. The net-

works are trained on the severe case and evaluate on the mild settings (left: σ = 70→ 30

for color denoising; right: q = 10→ 30 for JPEG artifact removal). This discrepant envi-

ronment is to measure the generalization ability to the unseen degradation level. Green/red

colors indicate better/worse performance of using MoA than the baseline.

Model Params.
Image denoising (Kodak24) JPEG artifact removal (Classic5)

σ = 70→ 70 (δ) σ = 70→ 50 (δ) q = 10→ 10 (δ) q = 10→ 30 (δ)

EDSR
38.4M

28.23 / 0.7689 27.95 / 0.7385 31.23 / 0.8375 33.28 / 0.8859
+ MoA 28.23 / 0.7686 28.41 / 0.8059 31.24 / 0.8373 34.30 / 0.9016
RDN

22.0M
28.19 / 0.7684 28.13 / 0.7517 31.19 / 0.8362 33.13 / 0.8826

+ MoA 28.20 / 0.7681 27.20 / 0.7854 31.16 / 0.8356 34.17 / 0.8997
RNAN

9.0M
28.10 / 0.7661 27.93 / 0.7450 31.22 / 0.8369 33.34 / 0.8861

+ MoA 28.06 / 0.7635 27.74 / 0.7863 31.09 / 0.8337 34.10 / 0.8984

Table 4.8: Quantitative comparison on realistic denoising dataset. δ denotes the

performance gap between the model w/ and w/o MoA.

Model Params.
SIDD+

w/o MoA (δ) w/ MoA (δ)

EDSR 38.4M 36.98(+0.00) / 0.9160 37.16(+0.18) / 0.9231
RDN 22.0M 37.07(+0.00) / 0.9192 37.21(+0.14) / 0.9251
RNAN 9.0M 36.81(+0.00) / 0.9172 36.95(+0.14) / 0.9156

outputs. For example, the tree trunks are erased, the texture of clouds are gone, and the

ripples in the water are wiped out. In contrast, with MoA, the networks successfully learn

to restore the distorted image while preserving the fine structures, which demonstrates

the good regularization effect of our method.

Realistic distortion restoration. To show that MoA brings more benefits in the real-

world scenario, we conduct a benchmark on the recently proposed realistic denoising

dataset, SIDD+ [78]. Compared to the synthetic distortion dataset, SIDD+ has much

larger variation under low-contrast and low-light environments. The key difference is that

distortions are applied at arbitrary levels due to the characteristics of the real-world image

capturing environment. As depicted in Table 4.8, our method enhances the restoration

performance by more than 0.10 dB PSNR for all the networks. This again emphasizes the

importance of the generalization ability to handle unseen and arbitrary corruption factors.
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Table 4.9: Quantitative comparison on mixed distortion dataset. δ denotes the

performance gap between the model w/ and w/o MoA. Note that all the models are trained

on a moderate level only.

Model
Mixed distortions

Mild (δ) Moderate (δ) Severe (δ)

EDSR 28.18(+0.00) / 0.7399 27.13(+0.00) / 0.6773 25.84(+0.00) / 0.6154
+ MoA 28.58(+0.40) / 0.7462 27.22(+0.09) / 0.6775 25.89(+0.05) / 0.6149

RDN 28.29(+0.00) / 0.7397 27.17(+0.00) / 0.6773 25.88(+0.00) / 0.6156
+ MoA 28.69(+0.40) / 0.7485 27.27(+0.10) / 0.6793 25.95(+0.07) / 0.6176

RNAN 28.43(+0.00) / 0.7424 27.20(+0.00) / 0.6754 25.91(+0.00) / 0.6145
+ MoA 28.69(+0.27) / 0.7463 27.24(+0.04) / 0.6776 25.90(-0.01) / 0.6155

Table 4.10: Quantitative comparison on two multi-degradation SR scenarios.

Green/red colors indicate better/worse performance of using MoA than the baseline.

Model
SR+DN SR+BLUR

Set14 (δ) Urban100 (δ) Manga109 (δ) Set14 (δ) Urban100 (δ) Manga109 (δ)

CARN 25.25/0.6564 23.24/0.6596 25.62/0.8018 25.26/0.6476 22.62/0.6195 25.11/0.7847
+MoA 25.24/0.6562 23.23/0.6590 25.60/0.8012 25.24/0.6472 22.62/0.6189 25.07/0.7835

RCAN 25.44/0.6653 23.71/0.6841 26.01/0.8161 25.56/0.6584 23.07/0.6443 25.83/0.8084
+MoA 25.46/0.6663 23.78/0.6872 26.11/0.8190 25.58/0.6591 23.16/0.6462 25.95/0.8109

EDSR 25.40/0.6636 23.58/0.6781 25.94/0.8127 25.54/0.6564 22.93/0.6352 25.65/0.8007
+MoA 25.47/0.6666 23.67/0.6836 26.04/0.8171 25.60/0.6596 23.02/0.6409 25.85/0.8078

4.5.3 Multiple Distortion Restoration

Until this point, we have only considered either a single distortion or a degradation

task, separately. From now on, we demonstrate the superiority of our method on more

challenging tasks, tackling multiple tasks together or mixed artifacts of random intensity

levels within a single image.

Mixed artifacts. To generate a mixed distortion dataset, we followed the process of [8].

Here, a sequence of Gaussian blur, Gaussian noise, and JPEG compression is applied to

DIV2K HQ images. The range of distortion intensity is preset depending on the group

they are in (mild, moderate, and severe), and the level of distortion in the range is ran-

domly sampled for each image. Table 4.9 shows the quantitative comparison on the mixed

distortion dataset where the networks are trained on a moderate level alone. Our method

successfully enhances the restoration performance across all the models we used. The per-
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RNAN + MoA(Δ) 
(27.31/0.7690)

EDSR + MoA (Δ) 
(26.91/0.7498)

Moderate 
(23.42/0.5991)

RDN + MoA (Δ) 
(29.20/0.7883)

RNAN (Δ) 
(26.67/0.7596)

EDSR (Δ) 
(24.57/0.7119)

HQ 
(PSNR/SSIM)

RDN (Δ) 
(24.47/0.7278)

Mild 
(28.01/0.6422)

RNAN (Δ) 
(20.19/0.4451)

EDSR (Δ) 
(23.28/0.3924)

HQ 
(PSNR/SSIM)

RDN (Δ) 
(18.98/0.1631)

RNAN + MoA(Δ) 
(32.83/0.9800)

EDSR + MoA (Δ) 
(32.20/0.9777)

RDN + MoA (Δ) 
(32.02/0.9782)

Severe 
(20.62/0.2466)

RNAN (Δ) 
(29.68/0.8668)

EDSR (Δ) 
(29.99/0.8565)

HQ 
(PSNR/SSIM)

RDN (Δ) 
(30.99/0.8700)

RNAN + MoA(Δ) 
(30.65/0.8697)

EDSR + MoA (Δ) 
(31.08/0.8696)

RDN + MoA (Δ) 
(31.38/0.8713)

Figure 4.10: Qualitative comparison on mixed distortion dataset. ∆ is the absolute

residual intensity map between the restored and the HQ image. Note that the networks

are trained using a moderate level (upper dashed line) only; LQ images below the dashed

line are distorted from the unseen degradation factors.

formance gains become more notable when transferring to the mild level. This is because

CutBlur provides the additional HQ information to the input so that a model acquires the

extra capability to avoid over-restoration issue, as we discussed in Figure 4.5. A similar

trend can be also seen in the other direction (moderate-to-severe), where the distortion

is severer than the usual level during training. Except when the model capacity is small,

the networks trained with MoA show better performance.

This trend is more clearly seen in the qualitative results (Figure 4.10). When tested
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CARN + MoA (Δ) 
(21.07/0.5961)

LQ 
(19.81/0.6517)

EDSR (Δ) 
(21.17/0.6100)

SR+DN

CARN (Δ) 
(21.05/0.5963)

HQ 
(PSNR/SSIM)

EDSR + MoA (Δ) 
(21.47/0.6242)

RCAN + MoA (Δ) 
(21.61/0.6332)

RCAN (Δ) 
(21.33/0.6147)

CARN + MoA (Δ) 
(21.88/0.7508)

LQ 
(17.10/0.5484)

EDSR (Δ) 
(21.83/0.7569)

SR+BLUR

CARN (Δ) 
(21.69/0.7438)

HQ 
(PSNR/SSIM)

EDSR + MoA (Δ) 
(23.10/0.8078)

RCAN + MoA (Δ) 
(24.27/0.8377)

RCAN (Δ) 
(22.85/0.7935)

Figure 4.11: Qualitative comparison on multi-degradation SR datasets. (Top)

Bicubic downsample→Gaussian noise (SR+DN). (Bottom) Gaussian blur→ bicubic down-

sample (SR+BLUR). ∆ is the residual intensity map between the restored and the HQ.

on the moderate level (the first row, no train/test inconsistency), our method successfully

reduces the deviation between the HQ and restored image as shown in the residual intensity

map. The visual comparison between the baseline with and without MoA of the first

scenario (moderate-to-mild) shows a compelling result; all the baseline networks barely

output clean images. In fact, they generate massive aliasing artifacts, and this reveals

the vulnerability of image restoration models to the unseen levels of distortions. On the

other hand, the models with MoA remarkably remove the present noises in the LQ, which

is also summarized by 13.04 dB improvements (RDN) in PSNR. The moderate-to-severe

scenario also shows the benefits of using our method (the last row).

Multiple degradation tasks. Here, we consider an image degradation model that in-

volves downsampling with some distortions together. Since one has to solve two objectives

simultaneously with a single network, this becomes more challenging than learning to up-

sample an image or to remove the artifacts, separately. Similar to the previous SR results,

the performance of the models with large capacity is improved further. For example,

RCAN and EDSR gain an additional 0.10 dB to the baseline on the Manga109 dataset.

Figure 4.11 shows a visual comparison on SR+DN and SR+BLUR, and we see that, with MoA,
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the networks become better in restoring patterns especially where the aliasing artifact.

4.6 Discussion

The introduced CutBlur and MoA in this chapter are designed to train to train a

stronger and more robust model for various low-level vision tasks. We conducted a com-

prehensive analysis on the effect of the existing DA methods in various aspects, including

their frequency domain responses. Based on this analysis, we provided a set of principles

to design DA methods for low-level vision tasks, which led to CutBlur and MoA. By learn-

ing how and where to restore an image, CutBlur encourages the model to understand how

much to correct the underlying pixels. MoA aggregates the best of the curated DA meth-

ods enabling further improvements over a single DA. Throughout this chapter, we showed

that our proposed strategy consistently and significantly improves the performance across

various scenarios especially when the model size is big and the problem becomes closer

to real-world environments. The extensive experimental results showed that our method

can be applied to various tasks of single distortions, such as denoising and JPEG arti-

facts removal, and multiple distortions having more than two distortions or degradation

in a single image. Last but not least, our method helps the models to generalize better

in various conditions such as unseen pixel resolution, noise levels, and device-dependent

artifacts, which is beneficial for many real-world applications.
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Chapter 5

Unsupervised Image Restoration

In this chapter, we tackle a fully unsupervised super-resolution problem, i.e., neither

paired images nor ground truth high-resolution (HR) images. We assume that low resolu-

tion (LR) images are relatively easy to collect compared to high resolution (HR) images.

By allowing multiple LR images, we build a set of pseudo pairs by denoising and down-

sampling LR images and cast the original unsupervised problem into a supervised learning

problem but in one level lower. Though this line of study is easy to think of and thus

should have been investigated prior to any complicated unsupervised methods, surpris-

ingly, there are currently none. Even more, we show that this simple method outperforms

the state-of-the-art unsupervised method with a dramatically shorter latency at runtime,

and significantly reduces the gap to the HR supervised models. This simple method

should be used as the baseline to beat in the future, especially when multiple LR images

are allowed during the training phase. However, even in the zero-shot condition, we argue

that this method can serve as a useful baseline to see the gap between supervised and

unsupervised frameworks.

5.1 Overview

While most of the deep learning-based SR methods heavily rely on a large number of

image pairs (supervised SR), unfortunately, such a large-scale and high quality dataset is
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not always accessible, especially when we deal with a real environment. A few recent works

have proposed a workaround solving an unpaired SR task [106, 107]. Since this setup does

not require full supervision of LR and HR pairs but images from each domain, it is a

more realistic scenario for many real-world applications. However, in many applications,

gathering HR images itself requires a lot of efforts or sometimes even impossible.

To address this, Shocher et al., [9] have proposed a fully unsupervised method, zero-

shot super-resolution (ZSSR), which performs both training and testing at runtime using

only a single LR test image. By learning a mapping from a scale-down version of the

LR image to itself, it learns to exploit internal image statistics to super-resolve the given

image. It outperformed the previous internal SR methods [108] in a huge margin with a

high flexibility since this can easily be adapted to any unknown downsample kernels.

Input ZSSR Ours GT

Figure 5.1: Overview of the unsupervised restoration scenario. HQ (×4) [109]

images (1st column). ZSSR [9] with BM3D [110] results (2nd column). Our SimUSR with

BM3D results (3rd column). Ground truth HQ image (4th column) is not available in this

setup. Our method achieves superior SR performance for all the cases.

However, ZSSR has several drawbacks. 1) It requires an online optimization procedure

at runtime. Since it needs at least 1K steps (both forward and backward propagation),

the latency of the ZSSR is extremely high. 2) It is difficult to benefit from a large capacity
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Figure 5.2: Schematic comparison of the supervised SR, ZSSR [9], and our

SimUSR. We analyze current SR approaches in terms of the training dataset and of-

fline/online phases. The offline phase is operated beforehand the user’s inference request

(i.e., training of the supervised SR). Online phase denotes runtime. (1st row) While

supervised SR requires the LR-HR pairs, ZSSR and SimUSR use LR images only, making

them more applicable to the real-world scenarios. ZSSR utilizes only a single test LR

image and performs both optimization and inference at runtime. (2nd, 3rd rows) On

the other hand, SimUSR exploits additional LR images and follows a similar procedure to

the supervised setup, where the model is first trained offline and inference is done online.

network. Because ZSSR has to perform online training on a single image, the model should

be able to quickly adapt to the given image while avoiding the overfitting issue, which limits

ZSSR to use a shallow network architecture. 3) When noises are present in LR images,

ZSSR shows deteriorated performance because the model can never learn to denoise, and

even after adding a denoising module, it suffers from its restrictive framework. 4) It

does not utilize any prior information at all, which is an excessively restrictive constraint.

While collecting LR-HR image pairs are difficult, acquiring LR images only is relatively

easy and feasible in many real-world scenarios. Since the internal-based SR methods

generally show worse SR performance than the external-based models, it is desirable to

exploit every available prior information as long as it stays in the unsupervised regime.
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To mitigate these limitations, in this chapter, we propose a simple baseline framework

for unsupervised SR (SimUSR) that relaxes the ZSSR into a supervised setting. Instead

of using a single image, our SimUSR make pseudo-pairs using multiple LR images. To cor-

rectly guide the model, we employ BM3D [110] to remove noises from the LR images when

preparing the pairs. Though these are very simple corrections, they bring several bene-

fits: our framework can now exploit every benefit of supervised learning. Thanks to this

pseudo-supervision, ample prior information enables a model to reduce the performance

gap between the unsupervised (only LR is available) and the supervised setting (HR is

available). SimUSR can utilize recently developed network architectures and techniques

that provide huge performance gains (Figure 5.1). In addition, since the online training is

not necessary, SimUSR can significantly reduce its runtime latency as well. The differences

of the supervised SR, ZSSR, and SimUSR are summarized in Figure 5.2. We argue that

our assumption is fairly practical while still remaining under the unsupervised learning

setup; we only use LR images. Our approach is meaningful in that it investigates the blind

spot of the field that should have been addressed but overlooked.

5.2 Background

Supervised Super-resolution. Recently, deep learning-based super-resolution mod-

els [111, 112, 17, 113] have shown a dramatic leap over the traditional algorithms [114].

Most of the successful deep SR approaches fall into the supervised setting, where a net-

work is trained on an external dataset having low- and high-resolution pairs. As long as

the size of the dataset and the network capacity are large enough, it is well known that the

supervised approach provides a better chance to enhance the SR performance [17, 113].

However, it is also true that their performance and generalizability deteriorate dramat-

ically when the dataset size is small and when there exists mismatch between training

and testing environments [115]. To mitigate this issue, recent approaches focus on blind

SR, which assumes that there exist LR and HR pairs but with unknown degradation and

downsample kernel [116]. Unlike the above, our proposed method can train a network

even when there are no LR and HR pairs.
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Unpaired Super-resolution. A few recent works have addressed an unpaired SR

task [106, 107, 117] that does not assume a paired setting. Since this setup does not

require a full supervision, it is a more realistic scenario for many real-world applications.

Most of the methods employ generative adversarial framework [25] so that a generator

learns to map HR images into their distorted LR version. Using this generated pairs, they

train an SR network in a supervised setting. However, in practice, there are cases where

HR images are not even available, which requires a fully unsupervised SR.

Unsupervised Super-resolution. Though the unpaired SR is sometimes considered

as an unsupervised SR, we first clarify that unsupervised SR should strictly denote the

task without any supervision neither paired images nor HR images. Under this definition,

there are only a handful of studies [118, 119, 9] and zero-shot super-resolution (ZSSR) [9]

falls into this. ZSSR uses LR sons that are downsampled images of the given LR test

image (a.k.a LR father). Using this pseudo pairs, they train the model in a supervised

manner but only exploiting the internal statistics of the given test image. Because every

procedure is performed at runtime, ZSSR suffered from high latency. To overcome this,

Soh et al., [120] have proposed meta-transfer ZSSR (MZSR). They added a meta-transfer

learning phase to exploit the information of the external dataset, which decreased the

number of the steps required at runtime. Still, to quickly optimize the network, MZSR

was limited to use a simple 8-layer network. Unlike the aforementioned methods, our

SimUSR can benefit from the larger capacities of recently developed SR models and short

latency at runtime by removing the online update phase, while remaining in the fully

unsupervised regime in that it only utilizes the LR images.

5.3 Approach

5.3.1 Zero-shot Super-resolution

Zero-shot super-resolution (ZSSR) [9] tackles the fully unsupervised SR, where only

LR images (ILR) are available. To do that, it performs both optimization and inference
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at runtime using a single test image (Figure 5.2). During the online optimizing phase,

they use an test input image (ILR) as LR father (IfatherLR ) and generates LR son (IsonLR ) by

downsampling LR father with an arbitrary kernel k. Then, they create pseudo-pair

(I′LR, I
′
HR) = (IsonLR , I

father
LR ),

where IsonLR = ILR ↓s,k and IfatherLR = ILR. Here, ↓s,k denotes a downsampling operation

with an arbitrary kernel k and scale factor s.

With this pseudo-pair, optimizing a SR model now becomes a standard supervised

setting. The core idea of ZSSR is to make the model learn internal image-specific statistics

of a given test image during the online training. For inference, it generates final SR output

(ISR) by feeding ILR to the trained image-specific network.

5.3.2 SimUSR: Simple Baseline for Unsupervised Super-resolution

We introduce a simple baseline for a fully unsupervised super-resolution task (SimUSR).

Similar to the ZSSR [9], our method does not use any HR images for training the network.

However, we slightly relax the constraint of ZSSR and assumes that it is relatively easy

to collect the LR images, {ILR1
, . . . , ILRN

}, where N is the number of LR images. This

allows our method to exploit multiple pseudo-pairs:

(I′LRk
, I′HRk

) = (IsonLRk
, IfatherLRk

), for k = 1 . . . N.

Here, we generate IsonLR and IfatherLR with the same protocol that used in ZSSR.

Though we now lose the generalizability over a single test image, compared to the

cost of the relaxation, the benefits are very huge: we can fully enjoy the advantages

of the supervised learning framework. More specifically, using these multiple pairs, we

can now train a network offline and perform inference online as any supervised model

usually does. Our method can be implemented by a simple modification of the supervised

SR approach, it gives high flexibility and extensibility. For example, unlike the ZSSR
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Table 5.1: Quantitative comparison on the bicubic SR (scale ×4). We boldface

the best performance of both supervised SR and ours.

Dataset
Supervised SR

ZSSR
SimUSR (Ours)

CARN RCAN EDSR CARN RCAN EDSR

Set5 32.13/0.8937 32.63/0.9002 32.46/0.8968 31.13/0.8796 31.94/0.8908 32.40/0.8962 32.37/0.8955
Set14 28.60/0.7806 28.87/0.7889 28.80/0.7876 28.01/0.7651 28.44/0.7786 28.71/0.7860 28.70/0.7855
B100 27.58/0.7349 27.77/0.7436 27.71/0.7420 27.12/0.7211 27.49/0.7324 27.68/0.7394 27.66/0.7389
U100 26.07/0.7837 26.82/0.8087 26.64/0.8033 24.61/0.7282 25.70/0.7740 26.45/0.7986 26.31/0.7940
M109 - 31.22/0.9173 31.02/0.9148 27.84/0.8657 30.03/0.9014 30.73/0.9124 30.59/0.9107

Table 5.2: Quantitative comparison (PSNR) on SR (scale ×4) task with MoA.

We show the effect of MoA on our SimUSR and supervised SR (SSR) model. Note that

SSR results are provided to show the improved upper limit again.

Type Model Set14 Urban100 Manga109

SimUSR
RCAN

28.80 26.60 30.85
(+MoA)

SSR
RCAN

28.92 26.93 31.46
(+MoA)

and MZSR [120], which inevitably use shallow networks, we can use any off-the-shelf SR

network and technique available, such as data augmentation (Section 5.4.2). In addition,

since the runtime of our SimUSR only depends on the network’s inference speed, this also

gives a huge acceleration in terms of the runtime latency (Section 5.4.4).

5.4 Experiment

In this section, we describe our experimental settings and compare the performance of

our method with the supervised SR models and the ZSSR [9]. In Section 5.4.2, we analyze

how much our SimUSR improves the performance over the ZSSR and how far we are left

to reach the supervised performance. Then, in Section 5.4.3, we apply our method on the

NTIRE 2020 SR dataset [109].
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5.4.1 Experimental Setting

Baselines. We use ZSSR [9] as our major baseline method. However, since ZSSR and

SimUSR are not designed to handle noisy cases, we attach BM3D [110] as a pre-processing

step. For our SimUSR, we use various models as our backbone network. We use three SR

models: CARN, RCAN [113] and EDSR [17]. Each of the model have different numbers

of parameters from 1.1M to 43.2M (million).

Dataset and evaluation. We use the DF2K [121, 17] dataset for the bicubic degradation

SR task. However, unlike the Lim et al., [17], we only use the LR images when we train

the models. For evaluation, we use Set5 [45], Set14 [122], B100 [47], Urban100 [108], and

Manga109 [60] for bicubic SR task. To evaluate our method on the real-world SR task,

we use NTIRE 2020 dataset [109]. This dataset is generated with unknown degradation

operation to simulate the realistic image processing artifacts. In addition, only non-paired

LR and HR images are given so that the model should be trained via unsupervised setup.

Same as DF2K, we do not use any of HR images at the training phase. We use PSNR

and SSIM to measure the performance. We calculate both metrics on RGB channels for

the NTIRE dataset while only using the Y channel for the bicubic SR task.

5.4.2 Bicubic Super-resolution

Here, we compare SimUSR with the ZSSR and the supervised SR models. Though the

classical bicubic SR task is not our main task, it provides a testbed to analyze every model

simultaneously. This also shows how much gap there exists between the supervised and

unsupervised frameworks. For fair comparison, we report our performance using different

SR networks as our backbone (CARN, RCAN [113], and EDSR [17]). The quantitative

comparison on various benchmark dataset is shown in Table 5.1. Exploiting the additional

LR images, our SimUSR shows large improvements over the ZSSR in every case.

More interestingly, by exploiting the recent development of supervised SR techniques,

such as data augmentation, SimUSR further reduces the gap toward the supervised learn-

ing models (Table 5.2). Note that, while the supervised models can use HR images as
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ground truth, SimUSR only uses LR images. Therefore, the model should generalize over

the learned scale and pixel distributions. Toward this, we used mixture of augmentation

(MoA), which is a recent data augmentation method for low-level vision task. MoA is

known to not only improve the performance but also enhance the generalization power

of the model. By employing the MoA, which ZSSR does not benefit from (results not

shown), our performance again increases by 0.09 dB (Set14), 0.15 dB (Urban100), and

0.12 dB (Manga109), which are upto 3.63 dB (Manga109) improvements over the ZSSR.

Therefore, from now on, we use MoA with SimUSR by default unless it is specified.

The qualitative results also shows the superior results of SimUSR over the ZSSR (Figure

5.3). In all the cases, SimUSR benefits from the increased performance by using external

LR images. This tendency is clearly shown in the residual intensity map between the SR

and HR image. For example, our method successfully restores the replicating patterns

(1st, 3rd, and 4th rows) while ZSSR has difficulty of recovering distortions. Note that

ZSSR is supposed to better learn the internal statistics by repeatedly seeing the same LR

image patches, which is in principle good at recovering replicating patterns.

5.4.3 Real-world Super-resolution

In this section, we compare ZSSR [9] and our method on the NTIRE 2020 dataset [109].

We found two observations that 1) ZSSR suffers from noise, and 2) the data augmentation

methods, which are used in the original ZSSR, actually harm its SR performance (Table

5.3). Based on this observation, we decided to attach BM3D [110] before the ZSSR network

optimization. For a fair comparison, we also use BM3D with our SimUSR. Regarding the

data augmentation, we suspect that this is due to ZSSR network’s small capacity and the

severe spatial distortion by applying strong affine transformations.

By adding an ad-hoc denoiser (BM3D), ZSSR performance is dramatically improved by

0.63dB and 0.0422 in PSNR and SSIM, respectively. And by discarding affine augmenta-

tion, we can further enhance the ZSSR to achieve 26.55dB in PSNR (3rd row). With the

same setting, our proposed SimUSR outperforms the ZSSR in a huge margin. For exam-

ple, SimUSR with the lightweight SR network, CARN, already boosts the SR performance
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Table 5.3: Quantitative comparison on the NTIRE 2020 dataset [109]. We ana-

lyze the effect of denoising (w/ BM3D) and affine transformations (w/o Affine). We also

analyze the advantage of applying SimUSR.

Method
w/ w/o

PSNR / SSIM
BM3D Affine

ZSSR
25.82 / 0.6898

X 26.45 / 0.7320
X X 26.55 / 0.7344

SimUSR+CARN X X 27.19 / 0.7520
SimUSR+RCAN X X 27.24 / 0.7550
SimUSR+EDSR X X 27.28 / 0.7554

of the ZSSR by 0.64dB and 0.0176 in PSNR and SSIM, respectively. Moreover, thanks

to the high flexibility of our method, we can easily improve the performance by simply

changing the backbone to any other SR network. For instance, we get another 0.09dB

improvement in PSNR by just replacing a backbone network from CARN to RCAN [113].

Figure 5.4 shows the qualitative comparison between the ZSSR and our method with dif-

ferent backbone networks. Similar to the bicubic SR task, SimUSR (with any backbone)

provides better restoration results across various cases.

5.4.4 Execution Time

In this section, we evaluate and compare the latency of ZSSR and our SimUSR (Table

5.4). Note that we benchmark the runtime speed on the environment of NVIDIA TITAN

X GPU by generating a 1080p SR image on scale factor ×4. Although ZSSR has only

0.23M parameters, it requires a huge amount of runtime (300.83s) since it has to perform

optimization and inference at runtime. In contrast, our proposed SimUSR only takes less

than two seconds (1.93s) even if we use a heavy SR network (EDSR) as a backbone model.

Comparing to the ZSSR, our method is at least 155 times faster than the ZSSR and if we

use a lightweight SR network (CARN), 2,500 times faster (0.12s vs. 300.83s).

To embed the SR method to the real application, it is obvious that both SR performance

and the latency are important aspects (e.g. SR system for the streaming service). However,
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Table 5.4: The number of the parameters and runtime comparison. We measure

the runtime with 480×320 LR images with scale factor ×4.

Method ZSSR
SimUSR (Ours)

CARN EDSR RCAN

# Params. 0.23M 1.14M 15.6M 43.2M
Runtime 300.83s 0.12s 1.93s 1.07s

the above analysis reflects that although ZSSR has nice properties, which does not need

an HR image, applying it to the real application is challenging because of its high latency.

On the other hand, our approach can meet the criteria that real applications demand (on

both the performance and speed) by taking advantage of supervised SR. In addition, if

necessary, we can further reduce the latency by replacing the backbone to more lightweight

network thanks to the flexibility of our method.

5.5 Discussion

In this chapter, we introduce SimUSR, simple but strong baseline framework for un-

supervised SR task. We first clarify that unsupervised SR should strictly denote the task

without any access to HR images. While complying with this definition, we assume that

LR images are relatively easy to obtain in the real-world. Exploiting multiple LR images,

we generated a pseudo-pair dataset of LR images and their down-scaled version and use

this to train a SR model. This simple conversion allows us to enjoy the advantages of

supervised learning. Although this method works very firmly, there are some discussion

on the limitations and the future direction of this work.

Limitation. Though the accessibility to multiple LR images is a mild and reasonable

relaxation in many cases, there are still many applications and domains that cannot resort

on such assumption where collecting the data is very expensive, e.g., medical imaging. In

addition, SimUSR heavily relies on the generalizability of a model over different scales and

pixel distributions, which can cause unexpected artifacts. Because SimUSR uses bicubic

downsampling to prepare the pseudo pairs, this may also cause an implicit bias in the SR

90



model during the training. Finally, it is true that SimUSR is a basic approach that one

would easily come up with but overlooked until now. We argue that it should be by no

means a new state-of-the-art but serve as a reasonable baseline to beat in the future.

Future work. We showed that our SimUSR framework is a strong baseline but it still

has a plenty of room to improve its performance. For example, we used the BM3D as the

pre-processing module for removing the noise. This pre-module can be replaced to more

effective models [123].
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Figure 5.3: Qualitative comparison of SimUSR on synthetic SR datasets. ∆ is

the absolute residual intensity map between the network output and the ground-truth.

92



LR 
(24.60/0.6436)

Ours + CARN (Δ) 
(25.91/0.7176)

DIV2K: image0804

ZSSR (Δ) 
(25.23/0.6895)

HR 
(PSNR/SSIM)

Ours + RCAN (Δ) 
(26.12/0.7244)

Ours + EDSR (Δ) 
(26.04/0.7230)

LR 
(25.85/0.7069)

Ours + CARN (Δ) 
(28.03/0.7997)

DIV2K: image0831

ZSSR (Δ) 
(27.14/0.7762)

HR 
(PSNR/SSIM)

Ours + RCAN (Δ) 
(28.09/0.8018)

Ours + EDSR (Δ) 
(28.17/0.8029)

LR 
(21.82/0.6297)

Ours + CARN (Δ) 
(24.10/0.7211)

DIV2K: image0846

ZSSR (Δ) 
(22.58/0.6822)

HR 
(PSNR/SSIM)

Ours + RCAN (Δ) 
(24.42/0.7323)

Ours + EDSR (Δ) 
(24.45/0.7317)

LR 
(25.76/0.6843)

Ours + CARN (Δ) 
(27.42/0.7694)

DIV2K: image0850

ZSSR (Δ) 
(26.72/0.7484)

HR 
(PSNR/SSIM)

Ours + RCAN (Δ) 
(27.47/0.7710)

Ours + EDSR (Δ) 
(27.51/0.7719)

LR 
(24.56/0.7300)

Ours + CARN (Δ) 
(27.66/0.8522)

DIV2K: image0892

ZSSR (Δ) 
(24.04/0.7394)

HR 
(PSNR/SSIM)

Ours + RCAN (Δ) 
(28.07/0.8605)

Ours + EDSR (Δ) 
(28.02/0.8601)

Figure 5.4: Qualitative comparison of SimUSR on NTIRE 2020 dataset [109]. ∆

is the absolute residual intensity map between the network output and the ground-truth.
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Part III

Toward Multi-modal Distortion
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Chapter 6

Investigating the Multi-modality
in Distortion

In this chapter, we look through the multi-modal nature represented in distortions.

We first introduce a new multi-modality concept in the image distortion scenario, then

investigate through distortion recognition task; classification and detection since these are

important tasks in many applications. For example when compressing images, if we know

the exact location of the distortion, then it is possible to re-compress images by adjusting

the local compression level dynamically. We show that the current state-of-the-art object

classification and detection networks accurately recognize image distortions as well with

little effort the fine-tuning. In Chapter 7 we will discuss on image restoration method in

a multi-modal distortion case based on the analyzed insight in this chapter.

6.1 Overview

With the development of the mobile devices, demand for streaming media and cloud

service has skyrocketed. These services need a lot of storage to store multimedia, and it

is crucial to compress data using lossy compression techniques before storing. A higher

compression level is better in terms of storage, but it could cause serious local distortion

to images. What if we can detect the region in which the distortions occurred? Then, we
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(a) Reference (b) Classification (c) Detection-basic (d) Detection-difficult

Figure 6.1: Example of the Multi-modal Distortion scenario. (a) is the reference

image, (b) is the distorted image with salt and pepper noise for classification task. (c)

and (d) are both for detection task, with different levels of detection difficulty.

may correct the problem by dynamic compression techniques. Such techniques reduce the

compression level of detected distortion regions and re-compress using the reduced level.

The primary motivation in this chapter is to build a system that detects the distortion

region and performs compression dynamically. Hence, automatic distortion detection is an

essential part of this system. However, despite the importance of this task, recent image

quality assessment (IQA) methods only focus on predicting perceptual quality scores, such

as the mean opinion score (MOS) [124, 125, 126, 127].

One might question the validity of the assumption that multiple or multi-modal dis-

tortions exist in a single image. While it is true that distortions in an image are likely

to occur globally rather than locally, we consider a situation where individual images are

assembled to form a larger one. For example, when creating a panorama picture, the com-

pression of each shot may be subjected to independent distortion. When the individual

shots are combined to form the full photo, it might end up with localized distortions.

In recent years, many deep learning-based IQA approaches have been proposed, espe-

cially for non-reference IQA (NR-IQA). NR-IQA methods perform image quality assess-

ment without any direct comparison between the reference and the distorted image. The

IQA-CNN [124] model is the first such model that applies deep learning in IQA tasks. This

model uses a convolutional neural network (CNN) composed of five layers, that achieves

the result comparable to the full-reference IQA (FR-IQA) methods, such as FSIM [128].
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Deeper networks have been used in [125], whose structure is inspired by the VG-

GNet [129], and yields results that surpass FR-IQA approaches. DeepBIQ [126] is the

first to use pre-trained CNN and show the state-of-the-art result in the IQA task. How-

ever, although there exist many outstanding results, the distortion classification task re-

mains mostly unchallenged. Two notable exceptions to this are the IQA-CNN+ and the

IQA-CNN++ [127], which predict both the MOS and the distortion type with the similar

network used in IQA-CNN. One shortcoming of these models is that they are shallow

architectures, and thus might have limited capacity to successfully solve our task.

In addition, to best to our knowledge, distortion detection task with deep learning

method has not been applied yet. The reason is twofold: First, there is no sufficiently

large distortion detection dataset suitable for deep learning, and second, detection task is a

much more challenging problem than classification or predicting MOS is. The difficulty of

distortion detection is based on the fact that images can have heterogeneous and multiple

distortion types. In general, most IQA datasets contain only homogeneous distortion types

that make prediction relatively easy.

To tackle these issues, we introduce a multi-modal distortion scenario and create a new

dataset for both distortion classification and detection. Then we apply pre-trained CNNs

such as VGGNet [129] and ResNet [130] for distortion classification. Finally, we use deep

learning-based detection methods such as single-shot multi-box detector (SSD) [131] to

locate the distortion regions.

6.2 Multi-modal Distortion Scenario

In this section, we present a multi-modal distortion scenario and its related benchmark

dataset. To do that, we create a new dataset named Flickr-Distortion to evaluate image

distortion classification and detection task. To make this, we first collect 804 reference

images from Flickr with similar ways of NUS-WIDE [132], and make distorted images by

using the following eight distortion types: 1) Gaussian white noise (GWN), 2) Gaussian

blur (GB), 3) salt and pepper noise (S&P), 4) quantization noise, 5) JPEG compression
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noise, 6) low-pass noise, 7) denoising and 8) fnoise.

The reason we do not use the LIVE [133] dataset directly is that it contains global

distortions, whereas we deal with local distortions. Furthermore, prevalent distortion

dataset such as LIVE [133] or TID2013 [134] have insufficient amount of reference images

which are not suitable for training deep learning models.

6.2.1 Distortion Classification

In the dataset for the distortion classification task, each reference image is distorted

using eight distortion types with three levels. Thus, a single reference image results in 24

distorted images. The distortion procedure follows the LIVE dataset [133], and includes

such distortion types as homogeneous distortion. The distortion is applied to the entire

image (Figure 6.1(b)). We create 19,296 distorted images in total, and randomly split

data into 60% training, 20% validation, and 20% test set.

We implemented the generation of most noises except fnoise, for which we used the

scikit-image [135]. Detailed values we use are as follows: Gaussian noise is generated with

three values of variances: {0.0125, 0.025, 0.05}, and the amount of salt and pepper noise

are the same as Gaussian noise. For the Gaussian blur, we use the three sigma {1.5, 3, 6}

and in JPEG compression we use {20, 10, 5} quality levels. To implement the low-pass

noise, we simply scaled images with ratios {0.3, 0.1, 0.03}, and resized them to the original

image size. We implemented denoising with non-local means algorithm [136] using factors

{0.04, 0.06, 0.08}, but with fixed batch size and patch distance of 7 and 11, respectively.

Finally, fnoise is implemented using noise level 1/f with factor f ∈ {2.5, 5, 10}.

6.2.2 Distortion Detection

Unlike the Classification dataset, each image in the detection dataset can have

heterogeneous and multiple distortions, as shown in Figure 6.1(c). Since the SSD network

used in the detection task accepts images of dimension 300x300 as input, we crop the

center of the correct size before applying distortion.
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Distortion levels are chosen uniformly at random with a range of minimum and maxi-

mum values used in the Classification dataset. When choosing the distortion regions,

we sample the number of regions in a single image from a uniform distribution over the

interval [1, 4]. The ratio of region size to image size is also picked uniformly from [0.3,

0.7] (average is 0.43). We generate 20 images per reference image, with a total of 16,080

images created. For evaluation, we split data into 80% training and 20% for the test.

The assumption on the number of regions and sizes in the Detection dataset is quite

reasonable. However in practice, there may be many small regions of distortions. There-

fore, as in Figure 6.1(d), we created another dataset named Detection-difficult sets

(Above dataset is named with Detection-basic). In this dataset, the minimum and the

maximum number of regions per image are 5 and 9, respectively. The ratio of region and

image size is changed to 0.1 and 0.3, with an average of 0.18.

6.3 Experimental Analysis

In this section, we first describe the analysis protocols and detailed model settings

in Section 6.3.1. Then, we interpret the experimental results in Section 6.3.2. For ease

of exposition, we separate the analysis report by classification and detection. Note that

except for the pre-training of the network, we train and test using our proposed multi-

modal distortion dataset (Section 6.2).

6.3.1 Experimental Setting

For the multi-modal distortion analysis, we use a convolutional neural network (CNN)

to classify or detect the distortions within a single image. Here, we briefly explain the

detailed setups and protocols used in our experimental analysis.

Distortion Classification. Throughout this chapter, we experiment with VGG-16 [129]

and ResNet-101 [130]. Both networks are variants of CNN which consist of several con-

volutions, pooling, and fully-connected (FC) layers to recognize images. VGG-16 has
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13 convolution layers and 3 FC layers. Because of the simplicity of this network, many

researchers use the VGG-16 as a base network. The Atrous VGGNet is introduced by

DeepLab [137] with an architecture similar to the VGGNet, but with a difference in the

number of parameters in the final fully-connected layers, and its use of Atrous convolution

that allows for the processing of arbitrary-sized field-of-views. ResNet uses residual con-

nections to avoid the degradation problem. Without residual connections, deep networks

are known to not only overfit but also show increasing training error. Unlike the VGGNet,

ResNet-101 uses 101 layers with only the last layer being fully connected. Additionally, a

global average pooling technique is used to reduce the number of parameters.

In practice, training the entire CNN from scratch is a difficult and time-consuming job.

Also, if the dataset does not have sufficient training data, training does not converge well.

Therefore, it is common to use pre-trained networks which have been trained on large

external datasets such as ImageNet [138]. This transfer learning strategy works well if the

distribution of the source dataset (used for pre-trained) and target dataset are similar.

As ImageNet and our dataset have a similar distribution, we use CNNs pre-trained on

ImageNet for all our experiments.

Distortion Detection. For the distortion detection, we use the single-shot multibox

detector (SSD) [131]. With the development of CNN, many detection methods have been

proposed such as R-CNN [139], Faster R-CNN [140], YOLO [141], OverFeat [142], and

SSD [131]. R-CNN and its variants perform state-of-the-art detection, while inference time

is very slow due to the limitation of their architecture. On the other hand, YOLO and

SSD are real-time detection algorithms, with SSD outperforming YOLO. SSD computes

multi-scale feature maps for detection by adding extra convolution layers at the end of

the base network. Then six output feature maps from different convolution layers are

concatenated to form the final layer. With this idea, SSD effectively detects objects of

various sizes using a single, simple architecture, since the output maps from the lower layer

tend to capture fine-grained details of the object. Predictors of SSD rely on convolution

layers instead of the conventional fully-connected layers, to reduce inference time.

In our experiments, we use the best setting for SSD: 1) Use Atrous VGG-16 as a baseline
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Table 6.1: Quantitative results of distortion classification scenario. We measure

both classification accuracy and inference speed in this task. VGG- and ResNet-based

models outperform IQA-CNN variants.

Method w/o finetuning w/ finetuning Frame per sec.

IQA-CNN+ - 0.820 166
IQA-CNN++ - 0.782 250

VGG-16 0.858 0.984 83
Atrous VGG-16 0.855 0.984 90

ResNet-101 0.926 0.988 20

network since it shows a similar result with faster running time. 2) We use 300x300 as the

input dimension. If we increase the input dimension to 500x500, the inference becomes

much slower while the performance gain is relatively small. This shows that using 300x300

input can capture small-sized objects reasonably well in a short time via multi-scale feature

maps. 3) On the contrary to the SSD used in the object detection task, the only data

augmentation we use is the horizontal flip. This is because affine transformations might

corrupt the details of the distortion, such as in the case of scaling and shearing.

6.3.2 Experimental Result

Distortion Classification. We first evaluate the distortion classification task using pre-

trained networks. To do this, we remove the last fully-connected layer in the pre-trained

network and freeze all layers in the network. Then, we add a new fully-connected layer

suited for the number of classes of our dataset. Only this new layer is trained from

scratch. Since our classification dataset is homogeneously distorted as in LIVE [133], we

center-crop the images so the size fits the input layer of the network without concern for

equal distribution of the distortion. We also evaluate a fine-tuned network. The training

procedure of the fine-tuned network is the same as that of the non-fine-tune version, but

in this case, we let the gradient propagate through all layers.

The result of the classification task is given in Table 6.1. To verify what effect pre-

training has, we use IQA-CNN+ and IQA-CNN++1 [127] as the baseline. As can be

1We re-implemented these networks. Note that we remove linear regression layer for predicting MOS.
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(a) quantization→fnoise (b) S&P→GWN

Figure 6.2: Example of mis-classified distortions. (a) has quantization distortion but

is predicted as fnoise. (b) Salt and pepper noise classified as Gaussian white noise.

seen in the results, the pre-trained networks outperform baseline networks. Since all pre-

trained networks have deeper architectures compared to the baseline, they are suitable for

complex data due to the high network capacity. Moreover, the fine-tuning procedure makes

the network better adapt to the new data. Among non fine-tuned pre-trained networks,

ResNet outperforms the VGGNet family. This is due to the output of VGGNet being

4096-dimensional, which is twice as large as that of ResNet. However, all three networks

show similar performance after being fine-tuned. We conjecture that this is probably

because all networks have relatively large enough capacity to handle this task. Unlike the

accuracy, inference time shows a large gap among different architectures. ResNet is much

slower than the VGGNet family, and Atrous VGGNet is faster than the vanilla VGGNet

since Atrous VGGNet subsamples parameters in its final two fully-connected layers.

In most cases, our model can classify distortion types very well. However, as in Figure

6.2, some images are commonly mis-classified. For example, salt and pepper noise is often

mistaken as Gaussian white noise as seen in Figure 6.2(b) and vice versa. Figure 6.2(a)

shows a case where the image does not show an abrupt color change, in which case the

model also confuses quantization noise with fnoise. Such problems can be alleviated if

we directly compare the given image with a reference image, but in practice, there are

restrictions on using reference images.

Distortion Detection In this section, we present the results of the distortion detection
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Table 6.2: Quantitative results of distortion detection scenario. We measure the

detection performance via mAP and inference speed over a variety of IoU threshold values.

Atrous VGG performs slightly better than ResNet with higher FPS.

Method Frame per sec.
mAP. IoU:

@ 0.5 @ 0.75 @ 0.9

ResNet-101 16 0.910 0.900 0.842
Atrous VGG-16 63 0.919 0.906 0.873

Table 6.3: Transfer experiment results on multi-modal distortion detection.

Train data → Test data
mAP. IoU:

@0.5 @0.75 @0.9

basic → basic 0.919 0.906 0.873
difficult → basic 0.915 0.864 0.728

basic → difficult 0.717 0.467 0.109
difficult → difficult 0.908 0.895 0.785

experiment with SSD. Here, we only use the Atrous VGG-16 and ResNet-101 since VGG-

16 and Atrous VGG-16 have similar performance but Atrous VGG-16 is faster. The

IQA-CNN+ achieves reasonable results with very fast inference time, however, since this

model only has a single convolution layer, it is not appropriate to use the SSD that needs

multiple convolution layers.

When training the network, we use the pre-trained CNN, which is fine-tuned over

the Classification dataset, as a base network and stack SSD layer on top of the base

network. In the evaluation step, we use the mean average precision (mAP) metric which

measures the average precision of each class when the intersection over union (IoU) of the

bounding box is one of {0.5, 0.75, 0.9}. In typical object detection tasks, performance

evaluation is usually done with IoU @0.5. However, in our assumed scenario of finding

the distortion regions to apply local dynamic compression, finding accurate boxes is vital.

This is why we use a variety of IoU thresholds to assess the degree of our algorithm’s

region detection accuracy. Result of experiments are in Table 6.2. Surprisingly, there does

not seem to be any advantages of using ResNet over VGGNet in this experiment. We

believe that this is because VGGNet’s capacity is large enough to fit the given data. In

addition, Atrous VGG-16 excels ResNet-101 in terms of inference time, and it can be done
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(a) Test Acc. on basic (b) Test Acc. on difficult

Figure 6.3: Relationship between distortion size and detection accuracy with

IOU@0.9. (a) shows test accuracy with basic data and (b) is for difficult scenario.

in real-time on state-of-the-art GPUs such as Maxwell TITAN X.

As described in Section 6.2.2, distortion may occur in small local regions in the real

world. Therefore, evaluating using only the basic dataset might not be a desirable strategy.

To further investigate, we conducted a set of transfer learning experiments that evaluates

the four combinations of training-testing scenarios, where the training and testing datasets

can be either basic or difficult. Table 6.3 shows that the models trained and tested

on the same type of dataset yield the best performance. This is natural since the model

trained using only the basic set cannot catch distortions with the small region, while

training only on the difficult set tends to drive the detector towards finding small regions.

Note that in basic → difficult case, the trained model performs poorly when the IoU

threshold is large, since it misses most small-size regions. The graph in Figure 6.3 shows

how the accuracy changes as the size of the ground-truth regions changes. This also

illustrates that training with basic data is good when the area of the region is large but

performs worse for small sizes when trained on difficult data. To sum up, it is crucial to

match the settings between train and test data. But since we do not know much about the

test set, it is better to train on the difficult set to better-cope with possible worst-case

scenario based on the assumption that distortion may occur in the small local region.
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6.4 Discussion

In this chapter, we investigated and analyzed the novel problem of multi-modal distor-

tion scenario by using distortion classification and detection. To do that, we created a new

Flickr-Distortion dataset to train on. In distortion classification, we used fine-tuned

models that have been pre-trained on the ImageNet data, to reach convergence quickly.

By doing so, we discovered that fine-tuned CNNs outperform other baseline models such

as IQA-CNN+. In the multi-modal distortion detection scenario, which also has not been

addressed previously, we found that deep learning-based methods can efficiently classify

and detect various distortions.

We expect that our analysis can motivate the usefulness of assuming the multi-modality

of the distortion in many applications such as dynamic compression techniques or image

reconstruction. In addition, some notable findings based on the analysis also can give some

insight into the community. One of our main discoveries is that the difference in the quality

of training images and the testing images significantly affects the overall performance. This

is not necessarily a surprising fact from a machine learning point-of-view, but it does have

important practical implications. Since we do not know in advance the quality of the

image we process, it might be difficult to guarantee the performance of our final system.

We propose that we deploy our system after training on image sets consisting mostly of

difficult images, to cope with the worst-case scenario.

Future directions. We are planning to further develop our system to handle multiple

distortions in a specialized manner. Our current system tries to classify and detect multiple

distortions using a single structure. To account for multiple distortions, one must have

a high-capacity system that could potentially lead to overfitting. If we could devise an

ensemble-like system that specializes in each distortion type, the system might be able

to focus on quality-neutral generalization within each distortion. In Chapter 7, we will

present the image restoration task on the multi-modal distortion scenario by utilizing the

analysis derived in this chapter.
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Chapter 7

Multi-modal Distortion Restoration

In this chapter, we introduce the image restoration method for multi-modal distortion.

As discussed in the earlier part, scenarios that assuming a single distortion only may

not be suitable for many real-world applications. To deal with such cases, some studies

have proposed sequentially combined distortions datasets. Viewing in a different point

of combining, we introduce a spatially heterogeneous distortion dataset in which multiple

corruptions are applied to the different locations of each image. This dataset is similar

to the one in Chapter 6, but we refine it to be more realistic. In addition, we propose

a mixture of experts network to effectively restore a multi-distortion image. Motivated

by the insight in Chapter 6 and the multi-task learning literature, we design our network

to have multiple paths that learn both common and distortion-specific representations.

The proposed network performs both distortion recognition (in an unsupervised way) and

restoration simultaneously so that it does not require any additional processing pipeline.

By doing so, our model is effective for restoring real-world distortions and efficient in terms

of model serving perspective.

7.1 Overview

As we observed in the previous chapters, the performance of the image restoration

methods has been significantly improved by the use of a deep learning-based approach.
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However, most of these models assume that the image is corrupted by a single distortion

only (Figure 7.1b), which may not be suitable for the real scenarios. In real-world appli-

cations, there can be mixed or multiple distortions in one image such as a JPEG artifact

of the blurry image or a photo taken on a hazy and rainy day. To cope with such a multi-

modal nature, some studies have proposed new datasets [8, 143] or methods [144, 145]

recently. They generated datasets by overlapping multiple distortions sequentially, which

makes the assumption more realistic than the single distortion (Figure 7.1c).

Viewing a different point of the multi-modality in distortion, in this chapter, we will

discuss a spatially heterogeneous distortion scenario. In this circumstance, distortions are

applied in different regions of the image (Figure 7.1d). This concept makes the scenario a

proxy environment of real-world applications such as multi-camera systems. For example,

in the case where the images are acquired from various devices or post-processors, stitching

these images may produce output that has different quality regions, thus degrading the

recognition performance. Because of the nature of the spatial-heterogeneity, it is crucial to

catch both what and where the corruptions are, unlike the existing multi-modal distortion

datasets [8, 143] which spread corruptions to the entire image. The overall motivation

and the core spirit of viewing multi-modality in distortion are identical as we discussed

in Chapter 6. Here, we go beyond the previous environment more realistically since the

dataset used in Chapter 6 is spatially sparse thus may not be ideal to potential applications

in which multiple images acquired from different devices with multi-modal distortion (i.e.,

image stitching process).

To address the above requirements, we propose a mixture of experts with a parameter

sharing network (MEPSNet) that effectively restores an image corrupted by the spatially-

varying distortions. Motivated by the multi-task learning [147, 148] and the mixture of

experts [149], we build our network to have a multi-expert system (Figure 7.2). With this

approach, individual distortion can be treated as a single task, thus the model divides and

distributes the task to appropriate experts internally. By doing so, experts are able to

concentrate on restoring only the given single distortion. We experimentally observed that

each expert learns a particular distortion distribution as well. Note that even though we

build every expert to be identical, any type of the network design can be adapted thanks
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(a) Clean image (b) Single distortion (c) Mixed distortions (d) Ours

Figure 7.1: Comparison of the modality assumptions in distortion. (a) Clean

image. (b) Single distortion (Gaussian noise). Only one corruption is applied to the

image. (c) Mixed distortions [8]. Multiple distortions corrupt the image in sequentially

(Gaussian blur and Gaussian noise), but no variation on the spatial domain. (d) Our pro-

posed spatially-variant distortion. Instead of mixing in sequentially, we spatially combine

heterogeneous distortions (left: Gaussian blur, right: Gaussian noise).

to the flexibility and modularity of our framework.

However, naively constructing the sub-networks (experts) may limit the power of us-

ing MTL. Misra et.al., [10] investigated the trade-offs amongst different combinations of

the shared and the task-specific architectures and revealed that the performance mostly

depends on the tasks, not on the proportion of the shared units. Based on the above

investigation, they proposed a cross-stitch unit so that the network can learn an optimal

combination of shared and task-specific representations. Following the analysis of Misra

et.al., [10], we use the soft parameter sharing [146] to guide experts to learn both shared

and distortion-specific information effectively. In this approach, convolutional layers of the

experts only contain the coefficient vector, not the entire weights and biases. Instead, these

are stored in the global template bank thus layers adaptively generate their parameters

by a linear combination between the coefficient vector and the templates. It allows each

expert to grasp not only the characteristics of the individual distortions but also common

representation from the various corruptions automatically. In addition, the number of the

parameters is decoupled to the number of the experts and we can increase the experts

only using negligible additional parameters. Our experiments show that MEPSNet out-

performs other restoration methods including OWAN [144] which is specifically designed

network to manage multiple distortions.
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symbols are concatenation and element-wise addition operations, respectively.

The mixture of experts unit has several pathways, each with multiple SRIR blocks. The

parameters of all SRIRs are soft-shared through the global template bank [146].

7.2 Background

Multiple image distortion restoration. In real-world applications, multiple distor-

tions can damage entire images, or only the partial regions. Restoring such images using

the model trained on a single distortion dataset may produce undesirable artifacts due to

the mismatched distribution. To close the gap between the real and simulated data, recent

studies have proposed new datasets [8, 143] and methods [144, 145] for multi-distortion

restoration task. In their datasets, images are damaged with sequentially applied distor-

tions [8, 143] or only small parts of the image are corrupted. To restore multiple distor-

tions, Yu et al., [8] used the toolbox that has several distortion specialized tools. Then,

the framework learns to choose the appropriate tool given the current image. Similarly,

path-restore [145] and OWAN [144] adopt a multi-path approach so that the models dy-

namically select an appropriate pathway for each image regions or distortions. Although

our method is also motivated by the multi-path scheme, we have two key differences.

First, our proposed network is built for restoring spatially-varying distortions. Second, by

cooperatively using a mixture of experts and parameter sharing strategies, we can achieve
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more advanced performance than the other competitors.

Multi-task learning. Multi-task learning (MTL) guides a model to learn both common

and distinct representations across different tasks [147, 148]. One of the widely used

approaches for MTL is combining a shared and task-specific modules [147]. Based on this

work, numerous studies have been investigated the power of MTL in various tasks [10,

150, 151]. Among them Misra et al., [10] is one notable work; they proposed a cross-

stitch unit to optimize the best combination settings for given tasks with a end-to-end

training. Without this module, the optimal point depends on the tasks, and the searching

process may become cumbersome. Hinted by this work, our network also learns to find

the balance between the shared and the distortion-specific representations using the soft

parameter sharing approach.

7.3 Spatially Heterogeneous Distortion Scenario

In this section, we introduce a novel spatially-heterogeneous distortion dataset (SHDD).

Our proposed dataset is designed to simulate the scenario where the image is corrupted

by spatially varying distortions. To implement this idea, we synthetically generate cor-

rupted images using divide-and-distort procedure. That is, we divide clean images into

the multiple blocks (divide), and corrupt each block with selected distortions (distort).

In divide phase, we split images according to the virtual horizontal or vertical lines

(Figure 7.3). These lines are randomly arranged so as to prevent the model from mem-

orizing the position of the resulting regions. We create three levels of difficulties (easy,

moderate, and difficult), by varying the number of split regions. The reason for creating

a multi-level dataset is two-fold. First, we consider the relationship between the restora-

tion hardness and the number of regions presented in a single image. Second, we would

like to explore the robustness of the model by training on one level and evaluating it on

others. In distort stage, we corrupt each block with randomly selected distortion. We use

1) Gaussian noise, 2) Gaussian blur, 3) f-noise, 4) contrast change, and 5) identity (no

distortion). Note that we include identity to the distortion pool. By including it, we can
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(a) Easy (b) Moderate (c) Difficult

Figure 7.3: Examples of the spatially-heterogeneous distortion dataset (SHDD).

We separate our dataset into three levels (easy, moderate, and difficult) according to

the number of the blocks in a single image. To generate a dataset, we first split image to

sub-images using the virtual perforated line (divide phase) and corrupt each region with

different distortions (distort phase). Best viewed on display.

measure the generalizability of the model in depth since deep restoration methods tend

to over-sharpen or over-smooth when the input is already of high-quality. In addition, it

simulates more realistic cases where the real-world scenarios suffer very often (i.e. merging

clean image to the corrupted ones).

We build SHDD based on DIV2K [121]. This dataset has 800 and 100 images for

training and validation respectively. We use half of the DIV2K validation dataset as

validation of SHDD and the rest of half for testing. For each of the high-quality images,

we generate 12 distorted images (training dataset: 9,600 = 800×12 images) to cover data

samples as densely as possible since SHDD is inherently sparse due to the spatially-varying

distortions. We set {easy, moderate, difficult}-levels by chopping each image {2, 3, 4}-

times (Figure 7.3). The distortions used in SHDD are carefully selected following the recent

image distortion datasets [152, 153]. These reflect the real-world scenario, especially for

image acquisition and registration stage. When applying the distortions, we randomly

sample its strength from following ranges: 1) [0.005, 0.02]-variances for Gaussian white

noise, 2) [1.0, 2.5]-variances for Gaussian blur, 3) [6.0, 10.0]-scales for f-noise (pink noise),

and 4) [25.0, 40.0]-levels for contrast change.
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7.4 Approach

Our proposed mixture of experts with a parameter sharing network (MEPSNet) is

composed of five parts: feature extraction, mixture of experts, template bank, feature

fusion, and reconstruction blocks (Figure 7.2). In Section 7.4.1, we show an overview of

our proposed method. Then, we describe the multi-expert architecture and the feature

fusion module in Section 7.4.2 and 7.4.3.

7.4.1 Model Overview

Let’s denote X and y as a distorted and a clean image, respectively. Given the image

X, a feature extractor fext computes the intermediate feature F0 = fext(X). To extract

informative features, the extraction module has multiple convolutional layers (we use three

layers) and their dimensions are gradually expanded up to 256 unlike the recent image

restoration methods [17, 113]. We observed that the capacity of the extraction module

makes the impact to the performance. We conjecture that it is due to the usage of multiple

distortion-specialized experts. With this concept, it is crucial to extract informative shared

representation to encourage the individual experts concentrate solely on their own goal.

Extracted intermediate feature F0 is then fed into the mixture of experts module which

outputs a concatenated feature FD as in below.

FD =
[
fkexp(F0)

]
, for k = 1 . . . N (7.1)

Here, N is the number of experts, fexp and [.] denote the expert branch and the channel-

wise concatenation respectively. With this deep feature FD, we finally generate restored

image ŷ by Equation 7.2. To guide the reconstruction module to gather multiple infor-

mation adequately, we attach the attentive feature fusion module ffuse before the image

reconstruction unit.

ŷ = frecon(ffuse(FD)). (7.2)
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Figure 7.4: An illustration of the mixture of experts module. (Left) Expert branch

with parameter sharing. Experts are shared using global template bank (other branches

are omitted). In each pathw, there exist three shared residual-in-residual (SRIR) units

which have several shared residual blocks. (Right) Comparison of the standard and our

shared residual blocks. While convolutional layers of the standard block have their own

parameters {W (1), . . . ,W (4)}, ours only have coefficient. Instead, weights are adaptively

generated using coefficients {α(1), . . . , α(4)} and templates {T 1, . . . , T k}.

We optimize our MEPSNet using a pixel-wise L2 loss function. While several criteria for

training restoration network have been investigated [154, 111], we observed that there is

no performance gain of using other loss functions in our task.

7.4.2 Mixture of Parameter Shared Experts

Mixture of experts module. In our network, this module is the key component to

successfully restore heterogeneous distortions. As shown in Figure 7.2, multiple branches,

dubbed as experts, are positioned in between the feature extraction and the feature fusion

blocks. Each expert has the same structure, which consists of three contiguous shared

residual-in-residual (SRIR) units and few convolutional layers (green boxes in Figure 7.2)

that envelope the SRIR blocks. Following the prior works [17, 113], we use a long skip

connection to bridge across multiple intermediate features for stable training. The SRIR

is composed of multiple residual blocks [17, 53] as shown in Figure 7.4 (left). We also

employ additional shortcut connection between the residual blocks to further stabilize the

training [113]. Note that the structure of the experts is not restricted to be identical; they

could be the networks with different receptive fields [155] or disparate operations [144].
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However, we choose to set all the experts to have same structure considering both the

simplicity and the performance.

In contrast to the conventional mixture of experts [149], our experts module does

not have an external gating network. Instead, distilled information adaptively selects

their importance themselves by the self-attention scheme (Section 7.4.3). Since we do not

attach additional gating mechanism, now the formulation of our mixture of experts module

is related to the multi-branch networks [156, 157]. However, we observed that the vanilla

multi-branch network requires very careful tuning to stabilize the training and even shows

degraded performance when we increase the number of the branches or the depths of each

branch. We hypothesize that the degradation issue of using multi-branch system arises

due to the isolated branch structure. That is, no bridge exists between the branches, thus

experts (branches) learn all the representations on their own way without referring others.

This is inefficient since some information are sufficient to be extracted once and shared to

others. To mitigate such issue, we employ soft parameter sharing scheme.

Soft parameter sharing. We use this scheme [146] to guide the experts in acquiring

both shared and distortion-specific information effectively. Contrary to the hard param-

eter sharing (i.e. recursive network), parameters of the layer are generated by a linear

combination of the template tensors in the bank. We set the bank as global (Figure 7.4,

left) so that all the SRIRs are shared altogether. The SRIR has shared residual blocks

(SResidual) which communicate with a template bank. The SResidual is composed of sev-

eral shared convolutional layers (SConv), and the parameters of the SConv are adaptively

generated through the template bank (Figure 7.4, right). In detail, a standard convolu-

tional layer stores weights W ∈ RCin×Cout×S×S (S is kernel size). In contrast, our SConv

only contains a coefficient vector α ∈ RK , where K is the number of templates in the

bank. Instead, the global template bank holds all the weights as {T1, . . .TK} where Tk

is the [Cin × Cout × S × S]-dimensional tensor. By referring these templates, each layer

generates their adaptive weight W̃ as

W̃ =

K∑
j=1

αjTj . (7.3)
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Jointly using a parameter sharing and the mixture of experts provides two advantages:

First, the number of the parameters is determined by the number of templates K, not the

experts. Second, it improves the restoration performance compared to the model with-

out a parameter sharing. In detail, we share the parameters not only within the experts

but also between the branches. This allows every expert to jointly optimize the common

representations from various distortions while each expert produces their specialized fea-

tures. We can also interpret the benefit of the parameter sharing as in the multi-task

learning literature. In a multi-task learning context, finding a good balance between the

task-specific and the shared representations is cumbersome job and moreover, the opti-

mal point depends on the tasks themselves [10]. To find the best combination without

human-laboring, they share the intermediate representations using a cross-stitch unit [10].

Our approach has an analogous motivation to them but we tackle this with a parameter

sharing.

7.4.3 Attentive Feature Fusion

As described in Section 7.4.2, each expert branch generates their specific high-level

features. Our attentive feature fusion module takes concatenated features FD, which is

the output of the mixture of experts module, and fuses this information via channel-wise

attention mechanism [113, 158]. With given feature FD ∈ RC×H×W , we first apply global

average pooling to make C-dimensional channel descriptor FCD ∈ RC as in below.

FCD =
1

H ×W

H∑
i=1

W∑
j=1

FD(i, j), (7.4)

where FD(i, j) denotes the (y, x) position of the feature FD. With FCD, we calculate the

scaling vector S using a two-layer network followed by a simple gating scheme. Then, FF is

produced by multiplying S and FD in a channel-wise manner. Finally, the reconstruction
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block receives this feature and generates a restored image ŷ.

S = σ(W2 · δ(W1 · FCD)),

FF = S · FD. (7.5)

Here, σ(.) and δ(.) are sigmoid and ReLU respectively, and {W1,W2} denotes the weight

set of convolutional layers. With this attentive feature fusion module, diverse representa-

tions inside of the FD are adaptively selected. Unlike ours, previous mixture of experts

methods [149] generate attention vector using the external network. However, we observed

that such design choice does not work well in our task. Related to the isolation issue of

the vanilla multi-branch network, as described in Section 7.4.2, we suspect that isolated

external gating network cannot judge how to select features from the multiple experts

adequately. In contrast, our fusion module is based on the self-attention [113, 158, 159].

With this concept, attentive feature fusion unit is now closely linked to the main expert

module so that is able to decide which feature to take or not more clearly.

7.5 Experiment

Implementation details. We train all the models on moderate level of SHDD. The

reason for using single level only for training is to measure the generalizability of the

model by evaluating on unseen (easy and difficult) cases. In each training batch, 16

patches with a size of 80×80 are used as input. We train the model for 1.2M iterations

using ADAM optimizer [160] with settings of (β1, β2, ε) = (0.9, 0.99, 10−8), and weight

decay as 10−4. We initialize the network parameters following He et al. [51]. The learning

rate is initially set to 10−4 and halved at 120K and 300K iterations. Unless mentioned, our

network consists of three experts, each of which has three SRIRs. We choose the number

of SResidual blocks in SRIR to 12 and the number of the templates K as 16.
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7.5.1 Comparison with State-of-the-art Methods

Baseline. we use following restoration methods: DnCNN [161], VDSR [112], OWAN [144]

and RIDNet [162]. OWAN is proposed to restore multiple distortions while others are for

a single distortion. We modify VDSR by stacking convolutional layers four times than

the original ones to match the number of the parameters to the others. For OWAN and

RIDNet, we use author’s official code.

Evaluation on SHDD. We compare the MEPSNet to the baselines on SHDD using

pixel-driven metrics such as PSNR and SSIM. Table 7.1 shows the quantitative comparison

on the different levels of the SHDD test set. In this benchmark, our proposed method

consistently outperforms the others. For example, the performance gain of the MEPSNet

in moderate level is +0.53 dB PSNR compared to the second best method, RIDNet. In

addition, MEPSNet achieves the best performance on the unseen settings as well, and

especially shows the superior PSNR on difficult level, +0.41 dB to the second best. It

should be noted that OWAN [144] is also devised for the multi-distortion restoration.

However, their performance is much lower than both ours and RIDNet. We conjecture

that isolating all the operation layers and attention layer results in degraded performance.

On the other hand, ours can fully enjoy the effect of using multi-route by sharing the

parameters altogether. Figure 7.5 shows the qualitative results of our model. For the

contrast change distortion (1st and 4th rows), the other methods create unpleasant spots

(OWAN, RIDNet) or regions (DnCNN) while ours successfully reconstructs the original

color. Similarly, MEPSNet effectively restores the other corruptions, such as f-noise (2nd

row) or Gaussian blur (3rd row).

Evaluation on image recognition tasks. To further compare the performance of our

method, we use image recognition tasks: object detection and semantic segmentation. To

be specific, we distort images of COCO dataset [163] with same protocols of SHDD. Then,

we restore distorted images using the trained models on SHDD. We evaluate mean average

precision (mAP) score using faster R-CNN [164] and mask R-CNN [150] for detection and

segmentation respectively. As in Table 7.2, mAPs of the distorted images are significantly

lower than the clean cases. Restored results with our proposed MEPSNet show the best
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Table 7.1: Quantitative comparison on SHDD. We benchmark the MEPSNet in three

levels along with the other deep learning-based restoration methods.

Method
Levels of SHDD

Easy Moderate Difficult

DnCNN [161] 25.29 / 0.7110 25.54 / 0.7354 26.70 / 0.7723
VDSR [112] 27.34 / 0.7709 25.73 / 0.7701 25.95 / 0.7760
OWAN [144] 30.95 / 0.9181 29.77 / 0.9112 29.27 / 0.9098
RIDNet [162] 34.19 / 0.9361 32.94 / 0.9317 32.30 / 0.9282

MEPSNet (ours) 34.23 / 0.9369 33.47 / 0.9331 32.71 / 0.9284

Table 7.2: Quantitative comparison (mAP) on object detection and semantic

segmentation tasks. We use faster R-CNN [164] and mask R-CNN [150] to measure

mAP for object detection and instance segmentation, respectively.

Task Clean Distorted DnCNN VDSR OWAN RIDNet MEPSNet

Detection 40.2 26.4 26.8 25.6 28.6 29.5 29.5
Segmentation 37.2 24.4 24.8 23.6 26.5 27.4 27.5

mAP than the other methods and RIDNet [162] is the only method comparable to ours.

7.5.2 Model Analysis

In this section, we dissect our proposed MEPSNet through the internal analysis. Un-

less mentioned, we set the MEPSNet to have three SRIRs each of which includes twelve

SResidual blocks. We trained our model using 48×48 input patches.

Ablation study. In Table 7.3, we analyze how the mixture of experts (ME) and the

parameter sharing (PS) affect the restoration performance. First, using PS (2nd row)

outperforms the baseline (1st row) by a huge margin only using half of the parameters.

We hypothesize that the PS through the global template bank successfully guides the

model to combine low- and high-level features internally. The advantages of combining

the multiple features are also verified in recent restoration methods [165], and network

with PS (via template bank) enjoy the fruitful results by an alternative implementation

of the feature aggregating.

Simultaneously applying PS and ME additionally gives dramatic improvements (2nd vs.
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Figure 7.5: Qualitative comparison on SHDD.
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Table 7.3: Ablation study of MEPSNet. ME and PS denote the mixture of experts

and parameter sharing, respectively. Using both modules dramatically improves the per-

formance of the baseline and successfully suppressing the number of the parameters.

ME PS # Experts # Params. PSNR / SSIM

1 3.9M 29.36 / 0.8835
X 1 1.9M 33.55 / 0.9322

X X 3 2.2M 34.29 / 0.9353
X X 5 2.6M 34.39/0.9362

Table 7.4: Effect of the multi experts and parameter sharing under the layer

constraint scenario. We force the number of the residual (or SResidual) blocks in entire

mixture of experts module as 36. That is, expert has 36 blocks for single expert case (1st,

3rd rows), whereas 12 blocks for each when using three experts (2nd, 4th rows).

# Blocks # Experts PS PSNR / SSIM

36

1 29.36 / 0.8835
3 32.21/0.9226
1 X 33.55 / 0.9322
3 X 33.78/0.9334

3rd rows). Even though we triple the number of experts, the total number of parameters is

marginally increased by only 15%, thanks to the parameter sharing scheme. Increasing the

number of the experts to five (4th row) further boosts the performance as well. However,

unless we share the parameters, using five experts increases about 40% of the parameters

compared to the single expert network due to the additional coefficients and extra burden

to the fusion module. Considering the trade-off between the number of the parameters

and the performance, we choose to use three experts for the final model.

To analyze the impact of the mixture of experts and parameter sharing more clearly,

we conduct an experiment based on the layer constraint setting as in Table 7.4. In this

scenario, the number of the residual (or SResidual) blocks in the entire mixture of experts

module is fixed to 36. Without a multi-expert (1st, 3rd rows), models are three times

deeper than the others (2nd, 4th rows). However, single expert models result in degraded

performance than the multi-expert. It may contradict the recent trends of single distortion

restoration task [17, 113]: deeper network is better than the shallow one. Such a result

may indicate that it is necessary to view multi-distortion restoration task on a different
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(a) PSNR vs. # of SResidual blocks (b) PSNR vs. # of templates

Figure 7.6: Effect of the number of the SResidual blocks and the templates. (a)

Varying the number of the blocks of each expert. The number of the experts are fixed

as three for all the cases. With parameter sharing, they all have similar parameters. (b)

Increasing the number of the templates in the global bank from 4 to 32.

angle to the single distortion restoration literature.

Effect of the number of layers and templates. In Figure 7.6a, we fix the number of

the experts to three and vary the number of the SResidual blocks for each of the expert.

Not surprisingly, we can stack more layers without a sudden increase in the number of the

parameters. The performances are consistently improved except the 45 blocks case may

due to the unstable training of the extremely deep network. Increasing the number of the

templates also gives the progressive gains as show in Figure 7.6b. With diverse templates,

layers can generate more complex and advanced weight combinations so that it is possible

to restore complicated distortion patterns.

Feature visualization. Figure 7.7 shows the output feature map of the mixture of

experts module. The model without a mixture of experts (Figure 7.7b) struggles to recover

all the distortions simultaneously while ours separates the role to each other (Figure 7.7c-

e). For example, expert 1 produces coarse and large activations, implying that it mainly

deals with contrast change and partially reduces the color tone of the f-noise and Gaussian

noise. On the other hand, expert 2 concentrates on recovering edges for the Gaussian blur.

The expert 3 also focuses on the primitives but finer elements than the expert 2.
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Figure 7.7: Visualization of the extracted feature maps from the experts. (a)-

upper Distorted image by Gaussian noise (left) and contrast change (right). (a)-lower

Distorted image by f-noise (top) and Gaussian blur (bottom). (b) Generated feature map

of the single expert module, without mixture of experts. (c-e) Feature maps produces by

three different experts when using multi-expert system.

7.6 Discussion

In this chapter, we presented the spatially-heterogeneous distortion dataset (SHDD)

and the mixture of experts with a parameter sharing network (MEPSNet) for effective

distortion restoration. The proposed SHDD assumes the cases where the multi-modal

corruptions are applied to the different locations. To appropriately handle the above sce-

nario, our method is motivated by the analysis from the multi-task learning contexts [10].

By jointly utilizing the mixture of experts scheme [149] and the parameter sharing tech-

nique [146], MEPSNet outperforms the other image restoration methods on both the

pixel-based metrics and the indirect measures. As future work, we plan to integrate the

spatially-heterogeneous and the sequentially-combined distortions [8] concepts to further

reduce the disparity between the simulated and the real-world environments.
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Chapter 8

Conclusion and Discussion

We have studied how deep learning-based image restoration methods achieve “effi-

ciency” in various perspectives. This chapter summarises key insights derived from the

previous chapters. We close the thesis with future directions of my work and guide some

notable long-term perspectives for future image restoration research.

8.1 Key Insight

In this section, we revisit each chapter with a brief summary of key insights and method-

ologies developed to build an efficient image restoration model.

Part I: Model Perspective Efficiency. We first have done rethinking the true efficiency

of the model that it is necessary to consider not only the model parameters but also

the model operations (Chapter 2). Although this is an obvious aspect when we apply

the deep image restoration methods in real applications due to the latency issue, many

previous studies have overlooked it. To achieve this, we have developed a lightweight

super-resolution network with a novel cascading connection and by adapting some network

design techniques. In Chapter 3, we have gone beyond by focusing on the extreme super-

resolution. We have found that many previous methods (including the lightweight model

proposed in Chapter 2) suffer the training instability, resulting in an inferior performance.
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This could be alleviated by providing upsampled input images to the network, however, it

leads to a huge computation burden. By bridging two approaches, which are the early- and

later-upsampling, we have taken the progressive upsampling so that the model achieves a

good balance point between the performance and the efficiency.

Part II: Data Perspective Efficiency. One of the major open questions on the image

restoration community is the distribution shift between the training and test dataset. To

deal with this issue, some recent studies have introduced a new dataset that reflects the

real environment. However, collecting such a dataset is expensive and even impossible

for some cases. To detour this, in Chapter 4, we have analyzed the effects of the data

augmentation in the image restoration task and have observed that appropriate data

augmentations give beneficial impacts, especially for the realistic dataset. With the data

augmentation methods, now we can efficiently train the big restoration models with a

little amount of the real-world dataset. We have further investigated the more limited

scenario where no high-quality images exist (i.e., unsupervised image restoration). By

carefully modifying the zero-shot image restoration method [9], we have reformulated the

unsupervised environment into the supervised training regime. With this simple concept,

the proposed method has shown outperformed results compared to the previous method.

Part III: Toward Multi-modal Distortion. Images acquired from real-world devices

contain multiple distortions. Unfortunately, many previous studies only have focused on

the uni-modal distortion so that most of the methods significantly degraded in the real en-

vironment. To close these gaps, we have studied several questions: what is the multi-modal

nature of distortions? How we infuse the multi-modality to the image restoration model?

How we make an efficient multi-modal distortion restoration method? In Chapter 6, we

have discussed the assumption that multiple distortions appear in different sub-regions of

image. With this concept, we have analyzed whether deep networks can recognize such

distortions. The results have shown that modern deep methods are able to catch the

subtle difference of the multiple distortions very accurately, implying that we can leverage

this idea to a multi-modal distortion restoration task. In Chapter 7, we have designed

a multi-modal distortion restoration network referring to the insight derived in Chap-

ter 6. One possible approach is the restoration pipeline where the framework consists of
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the distortion recognition stage and the series of distortion-specific restoration networks.

Such framework is straightforward to use, however, we have not considered this due to

the efficiency issue (for both latency and model size). In contrast, we have built a single

network system that is composed of multi-expert modules so to make each expert takes

charge of individual distortion. With this architecture, the proposed network has achieved

state-of-the-art performance with reasonable efficiency.

8.2 Future Direction

This thesis has explored the efficiencies of deep image restoration methods in multiple

directions, however, there remain many unanswered questions and interesting aspects to

investigate. In this section, we point some potential future research topics toward an

efficient image restoration method as well as more long-term future directions of this field.

8.2.1 Follow-up Topics

More realistic multi-modal distortions. In Chapter 6 and 7, we have studied the

multi-modality in distortions. To make the dataset, we have corrupted the images synthet-

ically based on the multi-modal assumption. Because of the synthetic distortion process,

there still remains a distance between the real environment. As future work, closing the

gap between synthetic and realistic datasets is meaningful to the community.

Stronger data augmentation. In high-level vision tasks, there have been a lot of data

augmentation methods introduced beyond Mixup [3] and CutMix [4]. We believe that in

low-level vision, better data augmentations over CutBlur are not discovered yet. Then,

what are the possible candidates? Beyond the pixel-level inspection, rethinking the image

as the frequency signal would be one possible approach as having done in SFM [94].

Model efficiency in the wild. Although the proposed networks in this thesis have

accomplished the high efficiency on the number of the operations (MultAdds mostly), yet

it is unclear that MultAdds and actual inference time are perfectly aligned. As we have
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seen in Chapter 2, we can get some hints on this that MultAdds do not reflect the latency

very accurately especially when inference on GPU. There are many potential reasons for

this result, but we suspect that it because 1) internal implementation of the operations

is framework-dependent, thus for some cases, it hinders the efficiency improvement when

the features are not implemented in hardware-friendly (e.g., group convolution). 2) For

CARN, the cascading module is the key module for efficiency. However, because of the

multiple concatenation operations, this could slow down the actual runtime in GPU as

also described in [42]. For example, it has studied that the fragmented network design or

element-wise operations including concatenation (that CARN mostly depends on to boost

the performance) potentially increase the memory access cost, resulting in worse GPU

latency. Overall, the future direction of the model efficiency should be preceded with the

understanding of the hardware feature to “real” efficiency in the real world.

Adaptive efficiency control. Is efficiency is the ultimate solution for all the cases?

When the image is severely corrupted, one might want to restore it back to a clear image

even it takes extra time or burden. However, since most of the model efficiency modules

are “static”, this cannot handle the adaptive control from the users’ preference. With this

respect, one solution is the recognize-restoration process. That is, if we can recognize the

distortion information with a little overhead, the dynamic module gives high flexibility of

the efficiency that reflects the users’ requirement or severity of the distortions.

8.2.2 Long-term Topics

Tackling the distortion distribution shift. This is an open and challenging ques-

tion to make an image restoration model robust on the distribution shift. It occurs fre-

quently when we train the model with a synthetic distortion dataset and inference the

images corrupted with slightly different (but human may not notice) distortions. The

most straightforward approach is collecting a massive number of real dataset but it is

time-consuming and expensive to make low- and high-quality pairs and sometimes even

impossible (e.g., medical imaging dataset). Some recent studies try to mimic the realistic

distortions using GAN but are the GAN able to model the subtle difference of the synthetic
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and realistic distortions? We should think about whether the generative models also good

at mimicking the low-level or even frequency signals. Taking the other direction, combin-

ing the internal- and external-based restoration method is also another solution. That is,

the internal-based module first extract the image statistics and its related image-specific

distortion information and guide the external-based model to give extra robustness

Can image restoration benefit other tasks? Despite the great performance of the

deep recognition system, this is vulnerable to the undesired distortions in the input im-

age at the inference stage. In this case, can the restoration models help the high-level

vision system? One notable work is Liu et al., [166]; they jointly train the distortion

restoration and image segmentation networks so that the prior information of each mod-

ule improves both the restoration and segmentation performance. Another aspect would

be the restoration-recognition pipeline framework that restores the input image first and

recognize this as we have studied in Chapter 7. However, both approaches possibly yield

significantly degraded performance when the distribution shift of training and test is occur-

ring. Since the recognition module is dependent on the restoration counterpart, the error

or unpleasant artifact could damage the overall system. Nevertheless, such a paradigm is

worth researching in a long-term view for the robustness of the artificial visual system.

Besides, the image super-resolution has the potential to charity the image generation

task. Although recent methods such as BigGAN [167] or StyleGAN [168] have ability to

generate a high-resolution image, they still suffer several drawbacks. First, the computa-

tion burden of the high-resolution (> 512 × 512) is exponentially increased which is not

easily maintainable even for the modern devices. Second, the detailed textures of high-

resolution images look odd even when they perfectly draw global concepts such as object

shape or coarse texture. We can arise the natural question on these observations: Can

the super-resolution network improve the finer texture of GAN-generated image? If yes,

generating an overall image with a standard generative model first and refine the fine tex-

ture with a super-resolution network (or sub-module) might be the available option. For

the computation perspective, not-so-BigGAN [169] is one example study that they adopt

super-resolution module to the BigGAN to reduce the training time. However, again,

understanding of the distribution shift issue should be preceded in this scenario.

127



Bibliography

[1] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using deep convolu-

tional networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 38, no. 2, pp. 295–307, 2015.

[2] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image super-resolution

using very deep residual channel attention networks,” in Proceedings of the European

Conference on Computer Vision (ECCV), 2018.

[3] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond empir-

ical risk minimization,” in International Conference on Learning Representations

(ICLR), 2018.

[4] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix: Regularization

strategy to train strong classifiers with localizable features,” in Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV), 2019.

[5] M. Caron, P. Bojanowski, J. Mairal, and A. Joulin, “Unsupervised pre-training of

image features on non-curated data,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), pp. 2959–2968, 2019.

[6] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsu-

pervised visual representation learning,” in IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), 2020.

[7] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for con-

trastive learning of visual representations,” in International Conference on Machine

Learning (ICML), 2020.

128



[8] K. Yu, C. Dong, L. Lin, and C. Change Loy, “Crafting a toolchain for image restora-

tion by deep reinforcement learning,” in IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), 2018.

[9] A. Shocher, N. Cohen, and M. Irani, ““zero-shot” super-resolution using deep inter-

nal learning,” in IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2018.

[10] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, “Cross-stitch networks for multi-

task learning,” in IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2016.

[11] H. Huang, H. He, X. Fan, and J. Zhang, “Super-resolution of human face image using

canonical correlation analysis,” Pattern Recognition, vol. 43, no. 7, pp. 2532–2543,

2010.

[12] K. Nguyen, C. Fookes, S. Sridharan, M. Tistarelli, and M. Nixon, “Super-resolution

for biometrics: A comprehensive survey,” Pattern Recognition, vol. 78, pp. 23–42,

2018.

[13] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional network

for image super-resolution,” in Proceedings of the European conference on computer

vision (ECCV), 2014.

[14] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual networks

for single image super-resolution,” in IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR) Workshops, 2017.

[15] T. Tong, G. Li, X. Liu, and Q. Gao, “Image super-resolution using dense skip con-

nections,” in Proceedings of the IEEE/CVF International Conference on Computer

Vision (ICCV), 2017.

[16] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and C. Change Loy, “Esr-

gan: Enhanced super-resolution generative adversarial networks,” in Proceedings of

the European Conference on Computer Vision (ECCV), 2018.

129



[17] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep residual networks

for single image super-resolution,” in IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR) Workshops, 2017.

[18] J. Kim, J. Kwon Lee, and K. Mu Lee, “Deeply-recursive convolutional network for

image super-resolution,” in IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

[19] Y. Tai, J. Yang, X. Liu, and C. Xu, “Memnet: A persistent memory network for

image restoration,” in Proceedings of the IEEE/CVF International Conference on

Computer Vision (ICCV), 2017.

[20] W. Lai, J. Huang, N. Ahuja, and M. Yang, “Fast and accurate image super-resolution

with deep laplacian pyramid networks,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, pp. 1–1, 2018.

[21] C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution convolutional

neural network,” in Proceedings of the European conference on computer vision

(ECCV), 2016.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

2016.

[23] Y. Tai, J. Yang, and X. Liu, “Image super-resolution via deep recursive residual

network,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 2017.

[24] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken,

A. Tejani, J. Totz, Z. Wang, et al., “Photo-realistic single image super-resolution

using a generative adversarial network,” in IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), 2017.

[25] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

130



A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neu-

ral Information Processing Systems (NIPS), 2014.

[26] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer

and super-resolution,” in Proceedings of the European conference on computer vision

(ECCV), 2016.

[27] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional network

for image super-resolution,” in Proceedings of the European Conference on Computer

Vision (ECCV), 2014.

[28] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert,

and Z. Wang, “Real-time single image and video super-resolution using an efficient

sub-pixel convolutional neural network,” in IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), 2016.

[29] J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image super-resolution using very

deep convolutional networks,” in IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2016.

[30] L. Wang, Z. Huang, Y. Gong, and C. Pan, “Ensemble based deep networks for image

super-resolution,” Pattern Recognition, vol. 68, pp. 191–198, 2017.

[31] Y. Wang, F. Perazzi, B. McWilliams, A. Sorkine-Hornung, O. Sorkine-Hornung,

and C. Schroers, “A fully progressive approach to single-image super-resolution,”

in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

Workshops, 2018.

[32] M. S. Sajjadi, B. Scholkopf, and M. Hirsch, “Enhancenet: Single image super-

resolution through automated texture synthesis,” in Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV), 2017.

[33] M. Waleed Gondal, B. Scholkopf, and M. Hirsch, “The unreasonable effectiveness of

texture transfer for single image super-resolution,” in Proceedings of the European

conference on computer vision (ECCV) Workshops, 2018.

131



[34] L. Gatys, A. S. Ecker, and M. Bethge, “Texture synthesis using convolutional neural

networks,” in Advances in Neural Information Processing Systems (NIPS), 2015.

[35] A. Jolicoeur-Martineau, “The relativistic discriminator: a key element missing from

standard gan,” arXiv preprint arXiv:1807.00734, 2018.

[36] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assess-

ment: from error visibility to structural similarity,” IEEE Transactions on Image

Processing, vol. 13, no. 4, pp. 600–612, 2004.

[37] H. Talebi and P. Milanfar, “Nima: Neural image assessment,” IEEE Transactions

on Image Processing, vol. 27, no. 8, pp. 3998–4011, 2018.

[38] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable

effectiveness of deep features as a perceptual metric,” in IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), 2018.

[39] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in Neural Information Processing Sys-

tems (NIPS), 2012.

[40] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-

dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for

mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[41] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,

“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model

size,” arXiv preprint arXiv:1602.07360, 2016.

[42] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical guidelines

for efficient cnn architecture design,” in Proceedings of the European conference on

computer vision (ECCV), 2018.

[43] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014.

132



[44] E. Agustsson and R. Timofte, “Ntire 2017 challenge on single image super-resolution:

Dataset and study,” in IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR) Workshops, 2017.

[45] M. Bevilacqua, A. Roumy, C. Guillemot, and M. Alberi-Morel, “Low-complexity

single-image super-resolution based on nonnegative neighbor embedding,” in Pro-

ceedings of the British Machine Vision Conference (BMVC), 2012.

[46] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via sparse

representation,” IEEE Transactions on Image Processing, vol. 19, no. 11, pp. 2861–

2873, 2010.

[47] D. Martin, C. Fowlkes, D. Tal, J. Malik, et al., “A database of human segmented nat-

ural images and its application to evaluating segmentation algorithms and measuring

ecological statistics,” in Proceedings of the IEEE/CVF International Conference on

Computer Vision (ICCV), 2001.

[48] J.-B. Huang, A. Singh, and N. Ahuja, “Single image super-resolution from trans-

formed self-exemplars,” in IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2015.

[49] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, et al., “Image quality assess-

ment: from error visibility to structural similarity,” IEEE Transactions on Image

Processing, vol. 13, no. 4, pp. 600–612, 2004.

[50] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable

effectiveness of deep features as a perceptual metric,” in IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), 2018.

[51] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpass-

ing human-level performance on imagenet classification,” in Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV), 2015.

[52] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-

133



ward neural networks,” in Proceedings of the International Conference on Artificial

Intelligence and Statistics, 2010.

[53] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

2016.

[54] J. Kim, J. Kwon Lee, and K. Mu Lee, “Deeply-recursive convolutional network for

image super-resolution,” in IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

[55] J.-S. Choi and M. Kim, “A deep convolutional neural network with selection units

for super-resolution,” in IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR) Workshops, 2017.

[56] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep laplacian pyramid net-

works for fast and accurate super-resolution,” in IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2017.

[57] H. Ren, M. El-Khamy, and J. Lee, “Image super resolution based on fusing multiple

convolution neural networks,” in IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR) Workshops, 2017.

[58] Y. Fan, H. Shi, J. Yu, D. Liu, W. Han, H. Yu, Z. Wang, X. Wang, and T. S. Huang,

“Balanced two-stage residual networks for image super-resolution,” in IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2017.

[59] Y. Blau and T. Michaeli, “The perception-distortion tradeoff,” in IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (CVPR), 2018.

[60] Y. Matsui, K. Ito, Y. Aramaki, A. Fujimoto, T. Ogawa, T. Yamasaki, and K. Aizawa,

“Sketch-based manga retrieval using manga109 dataset,” Multimedia Tools and Ap-

plications, vol. 76, no. 20, pp. 21811–21838, 2017.

134



[61] P. Navarrete Michelini, H. Liu, and D. Zhu, “Multi–scale recursive and perception–

distortion controllable image super–resolution,” in Proceedings of the European con-

ference on computer vision (ECCV) Workshops, 2018.

[62] S. Vasu, N. Thekke Madam, and A. Rajagopalan, “Analyzing perception-distortion

tradeoff using enhanced perceptual super-resolution network,” in Proceedings of the

European Conference on Computer Vision (ECCV), 2018.

[63] Q. Yang, Y. Zhang, and T. Zhao, “Example-based image super-resolution via

blur kernel estimation and variational reconstruction,” Pattern Recognition Letters,

vol. 117, pp. 83–89, 2019.

[64] D. Liu, B. Wen, Y. Fan, C. C. Loy, and T. S. Huang, “Non-local recurrent network for

image restoration,” in Advances in Neural Information Processing Systems (NIPS),

2018.

[65] Y. Matsui, K. Ito, Y. Aramaki, A. Fujimoto, T. Ogawa, T. Yamasaki, and K. Aizawa,

“Sketch-based manga retrieval using manga109 dataset,” Multimedia Tools and Ap-

plications, vol. 76, no. 20, pp. 21811–21838, 2017.

[66] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[67] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, A. Rabinovich, et al., “Going deeper with convolutions,” in IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[68] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for

improved quality, stability, and variation,” International Conference on Learning

Representations (ICLR), 2018.

[69] E. L. Denton, S. Chintala, R. Fergus, et al., “Deep generative image models using

a laplacian pyramid of adversarial networks,” in Advances in Neural Information

Processing Systems (NIPS), 2015.

135



[70] H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, and D. Metaxas, “Stack-

gan: Text to photo-realistic image synthesis with stacked generative adversarial

networks,” in Proceedings of the IEEE/CVF International Conference on Computer

Vision (ICCV), 2017.

[71] P. J. Burt and E. H. Adelson, “The laplacian pyramid as a compact image code,”

in Readings in Computer Vision, pp. 671–679, Elsevier, 1987.

[72] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Fast and accurate image super-

resolution with deep Laplacian pyramid networks,” in IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), 2017.

[73] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization.,” in Inter-

national Conference on Learning Representations (ICLR), 2015.

[74] T. DeVries and G. W. Taylor, “Improved regularization of convolutional neural

networks with cutout,” arXiv preprint arXiv:1708.04552, 2017.

[75] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Fast and accurate image super-

resolution with deep laplacian pyramid networks,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 41, no. 11, pp. 2599–2613, 2018.

[76] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep residual networks

for single image super-resolution,” in IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR) Workshops, 2017.

[77] J. Cai, H. Zeng, H. Yong, Z. Cao, and L. Zhang, “Toward real-world single im-

age super-resolution: A new benchmark and a new model,” in Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV), 2019.

[78] A. Abdelhamed, S. Lin, and M. S. Brown, “A high-quality denoising dataset for

smartphone cameras,” in IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2018.

136



[79] X. Zhang, R. Ng, and Q. Chen, “Single image reflection separation with perceptual

losses,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 2018.

[80] R. Feng, J. Gu, Y. Qiao, and C. Dong, “Suppressing model overfitting for im-

age super-resolution networks,” in IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR) Workshops, 2019.

[81] R. Timofte, R. Rothe, and L. Van Gool, “Seven ways to improve example-based

single image super resolution,” in IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2016.

[82] S. Gu, W. Zuo, Q. Xie, D. Meng, X. Feng, and L. Zhang, “Convolutional sparse

coding for image super-resolution,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), 2015.

[83] R. Timofte, V. De Smet, and L. Van Gool, “A+: Adjusted anchored neighbor-

hood regression for fast super-resolution,” in Asian Conference on Computer Vision

(ACCV), 2014.

[84] G. Ghiasi, T.-Y. Lin, and Q. V. Le, “Dropblock: A regularization method for convo-

lutional networks,” in Advances in Neural Information Processing Systems (NIPS),

2018.

[85] X. Gastaldi, “Shake-shake regularization,” arXiv preprint arXiv:1705.07485, 2017.

[86] V. Verma, A. Lamb, C. Beckham, A. Najafi, I. Mitliagkas, D. Lopez-Paz, and Y. Ben-

gio, “Manifold mixup: Better representations by interpolating hidden states,” in

International Conference on Machine Learning (ICML), 2019.

[87] Y. Yamada, M. Iwamura, T. Akiba, and K. Kise, “Shakedrop regularization for deep

residual learning,” IEEE Access, vol. 7, pp. 186126–186136, 2019.

[88] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing data augmen-

tation,” arXiv preprint arXiv:1708.04896, 2017.

137



[89] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “Autoaugment:

Learning augmentation policies from data,” in IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), 2019.

[90] S. Lim, I. Kim, T. Kim, C. Kim, and S. Kim, “Fast autoaugment,” in Advances in

Neural Information Processing Systems (NIPS), 2019.

[91] J. Choe and H. Shim, “Attention-based dropout layer for weakly supervised object

localization,” in IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2019.

[92] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: a simple way to prevent neural networks from overfitting,” The Jour-

nal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[93] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, “Efficient object

localization using convolutional networks,” in IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), 2015.
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